Organic Letters
Letter
Scheme 5. Selected Transformations of 6a to 5-
Isoxazolidinones with Exocyclic CC Double Bonds
REFERENCES
■
(1) Alcarazo, M.; Lehmann, C. W.; Anoop, A.; Thiel, W.; Fuerstner,
A. Nat. Chem. 2009, 1, 295−301.
(2) Schobert, R.; Hoelzel, C. Topics in Heterocyclic Chemistry 2008,
12, 193−218.
(3) Bertani, R.; Casarin, M.; Pandolfo, L. Coord. Chem. Rev. 2003,
236, 15−33.
(4) Bestmann, H. J. Angew. Chem., Int. Ed. Engl. 1977, 16, 349−364.
(5) (a) Bestmann, H. J.; Schmid, G.; Sandmeier, D. Chem. Ber. 1980,
113, 912−918. (b) Bestmann, H. J.; Schmidt, M.; Schobert, R. Angew.
Chem. 1985, 97, 418−419. (c) Bestmann, H. J.; Schobert, R.
Tetrahedron Lett. 1987, 28, 6587−6590. (d) Bestmann, H. J.;
Schmidt, M.; Schobert, R. Synthesis 1988, 1988, 49−53. (e) Bestmann,
H. J.; Kellermann, W. Synthesis 1994, 1994, 1257−1261. (f) Schobert,
R.; Siegfried, S.; Nieuwenhuyzen, M.; Milius, W.; Hampel, F. Perkin
2000, 1, 1723−1730. (g) Boeckman, R. K., Jr.; Song, X.; Pero, J. E. J.
Org. Chem. 2006, 71, 8969−8972. (h) Boeckman, R. K., Jr.; Pero, J.
E.; Boehmler, D. J. J. Am. Chem. Soc. 2006, 128, 11032−11033.
(i) Schobert, R.; Dietrich, M.; Mullen, G.; Urbina-Gonzalez, J.-M.
Synthesis 2006, 2006, 3902−3914. (j) Ostermeier, M.; Schobert, R. J.
Org. Chem. 2014, 79, 4038−4042. (k) Winterer, M.; Kempf, K.;
Schobert, R. J. Org. Chem. 2016, 81, 7336−7341. (l) Uraguchi, D.;
Shibazaki, R.; Tanaka, N.; Yamada, K.; Yoshioka, K.; Ooi, T. Angew.
Chem., Int. Ed. 2018, 57, 4732−4736.
of the ylidic carbon to the triple bond, followed by
rearrangement via a phosphacyclobutene mechanism.21
In conclusion, BPh3 proved to be an efficient Lewis acid
catalyst for the [2+3] cycloaddition of Ph3PCCO with
nitrones. Key to the high efficiency of this transformation is
the ability of BPh3 to activate the nitrone substrate via Lewis
acid−base interaction and its inertness toward Ph3PCCO. This
new transformation provides access to a variety of previously
unknown 5-isoxazolidinones with exocyclic phosphonium ylide
moieties, useful precursors for the synthesis of 4-alkylidene-5-
isoxazolidinones.
(6) (a) Stork, G.; West, F.; Lee, H. Y.; Isaacs, R. C. A.; Manabe, S. J.
Am. Chem. Soc. 1996, 118, 10660−10661. (b) Han, G.; LaPorte, M.
G.; Folmer, J. J.; Werner, K. M.; Weinreb, S. M. J. Org. Chem. 2000,
65, 6293−6306. (c) Zhang, H.; Sridhar Reddy, M.; Phoenix, S.;
Deslongchamps, P. Angew. Chem., Int. Ed. 2008, 47, 1272−1275.
(d) Raghuraman, A.; Ko, E.; Perez, L. M.; Ioerger, T. R.; Burgess. J.
Am. Chem. Soc. 2011, 133, 12350−12353. (e) Risi, R. M.; Burke, S. D.
Org. Lett. 2012, 14, 1180−1182. (f) Yang, Y.; Bai, Y.; Sun, S.; Dai, M.
Org. Lett. 2014, 16, 6216−6219. (g) Wunder, A.; Rothemund, M.;
Schobert, R. Tetrahedron 2018, 74, 5138−5142.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
(7) Birum, G. H.; Matthews, C. N. J. Am. Chem. Soc. 1968, 90,
3842−3847.
(8) Pandolfo, L.; Facchin, G.; Bertani, R.; Ganis, P.; Valle, G. Angew.
Chem., Int. Ed. Engl. 1996, 35, 83−85.
Synthetic procedures for the preparation of 4−25 and
(9) Kniezo, L.; Kristian, P.; Imrich, J.; Ugozzoli, F.; Andreetti, G. D.
Tetrahedron 1988, 44, 543−556.
Accession Codes
(10) Bestmann, H. J.; Schmid, G.; Sandmeier, D.; Geismann, C.
Tetrahedron Lett. 1980, 21, 2401−2404.
mentary crystallographic data for this paper. These data can be
contacting The Cambridge Crystallographic Data Centre, 12
Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.
(11) Maigali, S. S.; Abd-El-Maksoud, M. A.; Soliman, F. M. J. Chem.
Sci. 2013, 125, 1419−1428.
(12) Maigali, S. S.; Abd-El-Maksoud, M. A.; Soliman, F. M.;
Moharam, M. E. J. Heterocycl. Chem. 2015, 52, 834−840.
(13) (a) Hamer, J.; Macaluso, A. Chem. Rev. 1964, 64, 473−95.
(b) Spence, G. G.; Taylor, E. C.; Buchardt, O. Chem. Rev. 1970, 70,
231−65. (c) Tufariello, J. J. Acc. Chem. Res. 1979, 12, 396−403.
(d) Rueck-Braun, K.; Freysoldt, T. H. E.; Wierschem, F. Chem. Soc.
Rev. 2005, 34, 507−516. (e) Murahashi, S.-I.; Imada, Y. Chem. Rev.
2019, 119, 4684−4716.
AUTHOR INFORMATION
Corresponding Author
■
*Department of Chemistry & Biochemistry, Texas Tech
University, Box 41061, Lubbock, TX 79409-1061. E-mail:
(14) (a) Janecki, T.; Wasek, T.; Rozalski, M.; Krajewska, U.;
Studzian, K.; Janecka, A. Bioorg. Med. Chem. Lett. 2006, 16, 1430−
1433. (b) Rozalski, M.; Krajewska, U.; Panczyk, M.; Mirowski, M.;
Rozalska, B.; Wasek, T.; Janecki, T. Eur. J. Med. Chem. 2007, 42, 248−
255. (c) Wyrebska, A.; Gach, K.; Szemraj, J.; Szewczyk, K.; Hrabec,
E.; Koszuk, J.; Janecki, T.; Janecka, A. Chem. Biol. Drug Des. 2012, 79,
112−120.
ORCID
Notes
(15) Brar, A.; Unruh, D. K.; Aquino, A. J.; Krempner, C. Chem.
Commun. 2019, 55, 3513−3516.
The authors declare no competing financial interest.
(16) (a) Mayer, U.; Gutmann, V.; Gerger, W. Monatsh. Chem. 1975,
106, 1235−1257. (b) Beckett, M. A.; Strickland, G. C.; Holland, J. R.;
Sukumar Varma, K. Polymer 1996, 37, 4629−4631.
ACKNOWLEDGMENTS
■
The authors gratefully acknowledge financial support by the
National Science Foundation (Grant 1407681; Project
SusChEM: IUPAC) as part of the IUPAC International
Funding Call on “Novel Molecular and Supramolecular
Theory and Synthesis Approaches for Sustainable Catalysis”.
(17) Mummadi, S.; Kenefake, D.; Diaz, R.; Unruh, D. K.; Krempner,
C. Inorg. Chem. 2017, 56, 10748−10759.
(18) Li, H.; Aquino, A. J. A.; Cordes, D. B.; Hung-Low, F.; Hase, W.
L.; Krempner, C. J. Am. Chem. Soc. 2013, 135, 16066−16069.
D
Org. Lett. XXXX, XXX, XXX−XXX