4
Tetrahedron
Campbell, L.; Dixon, D. J. J. Am. Chem. Soc. 2009, 131, 9140. (q)
Li, W.; Liu, X.-Z.; Zhou, X.-F.; Lee, C.-S. Org. Lett. 2010, 12,
548.
4. In(III)-catalyzed Conia-ene reactions: (a) Tsuji, H.; Yamagata, K.-
i.; Itoh, Y.; Endo, K.; Nakamura, M.; Nakamura, E. Angew.
Chem., Int. Ed. 2007, 46, 5350. (b) Itoh, Y.; Tsuji, H.; Yamagata,
K.-i.; Endo, K.; Tanaka, I.; Nakamura, M.; Nakamura, E. J. Am.
Chem. Soc. 2008, 130, 17161. (c) Takahashi, K.; Midori, M.;
Kawano, K.; Ishihara, J.; Hatakeyama, S. Angew. Chem., Int. Ed.
2008, 47, 6244.
5. Recently, the Conia-ene reactions of alkynals have been achieved
successfully by using a secondary amine and a π-Lewis acid. (a)
Binder, J. T.; Crone, B.; Haug, T. T.; Menz, H.; Kirsch, S. F. Org.
Lett. 2008, 10, 1025. (b) Montaignac, B.; Vitale, M. R.; Michelet,
V.; Ratovelomanana-Vidal, V. Org. Lett. 2010, 12, 2582 and
references therein.
Scheme 5. Possible mechanism for cyclization of 1d to 3d
In conclusion, we have developed new methods for the Conia-
ene reaction of alkynyl ketones. The existing methods using
Lewis acids and metal catalysts are applicable to easily
enolizable carbonyls such as β-ketoesters. In contrast, the present
methods using Tf2NH and In(OTf)3 enable the Conia-ene
cyclization of less enolizable alkynyl ketones at relatively low
temperatures. This study has enhanced synthetic utility of the
Conia-ene reaction for carbocycle construction. In addition, we
have succeeded in finding a novel type of carbocyclization useful
for the construction of cyclohept-2-enones. Application of the
present methods to the synthesis of other carbocycles is now
under further investigation.
6. Boaventura, M. A.; Drouin, J.; Conia, J. M. Synthesis 1983, 801.
7. (a) Davies, P. W.; Detty-Mambo, C. Org. Biomol. Chem. 2010, 8,
2918. (b) Jin, T.; Yamamoto, Y. Org. Lett. 2007, 9, 5259.
8. (a) Miura, K.; Yamamoto, K.; Yamanobe, A.; Ito, K.; Kinoshita,
H.; Ichikawa, J.; Hosomi, A. Chem. Lett. 2010, 39, 766. (b) Miura,
K.; Tomita, M.; Ichikawa, J.; Hosomi, A. Org. Lett. 2008, 10, 133.
(c) Miura, K.; Fujisawa, N.; Toyohara, S.; Hosomi, A. Synlett
2006, 1883.
9. Indeed, 2a' was quantitatively isomerized to 2a in the presence of
Tf2NH and In(OTf)3.
10. The cyclization of 1-phenylhept-6-yn-1-one by method A resulted
in failure. The Thorpe-Ingold effect (gem-dimethyl effect) seems
crucial for the present cyclization. For the Thorpe-Ingold effect,
see: Jung, M. E.; Piizzi, G. Chem. Rev. 2005, 105, 1735.
11. As a related reaction, Baba and coworkers have reported the
InBr3-promoted addition of silyl enolates to alkynes in an anti
fashion. Nishimoto, Y.; Takeuchi, M.; Yasuda, M.; Baba, A.
Angew. Chem., Int. Ed. 2012, 51, 1051.
References and notes
12. For electrophilic activation of alkynes with In(OTf)3, see:
Tsuchimoto, T.; Maeda, T.; Shirakawa, E.; Kawakami, Y. Chem.
Commun. 2000, 1573.
1. Snider, B. B. In Comprehensive Organic Synthesis; Trost, B. M.;
Fleming, I., Eds.; Pergamon Press: Oxford, UK, 1991; Vol. 5,
Chapter 1.1, p. 1.
13. For alkyne activation with Tf2NH, see: Tsuchimoto, T.; Joya, T.;
Shirakawa, E.; Kawakami, Y. Synlett 2000, 1777.
2. Conia, J. M.; Le Perchec, P. Synthesis 1975, 1.
3. (a) Jackson, W. P.; Ley, S. V. J. Chem. Soc. Perkin. Trans. I.
1981, 1516. (b) Cruciani, P.; Stammler, R.; Aubert, C.; Malacria,
M. J. Org. Chem. 1996, 61, 2699. (c) Mcdonald, F. E.; Olson, T.
C. Tetrahedron Lett. 1997, 38, 7691. (d) Kitagawa, O.; Suzuki, T.;
Inoue, T.; Watanabe, Y.; Taguchi, T. J. Org. Chem. 1998, 63,
9470. (e) Bouyssi, D.; Monteiro, N.; Balme, G. Tetrahedron Lett.
1999, 40, 1297. (f) Kenneedy-Smith, J. J.; Staben, S. T.; Toste, F.
D. J. Am. Chem. Soc. 2004, 126, 4526. (g) Staben, S. T.;
Kenneedy-Smith, J. J.; Toste, F. D. Angew. Chem., Int. Ed. 2004,
43, 5350. (h) Gao, Q.; Zheng, B. F.; Li, J. H.; Yang, D. Org. Lett.
2005, 7, 2185. (i) Lomberget, T.; Bouyssi, D.; Balme, G. Synthesis
2005, 311. (j) Corkey, B. K.; Toste, F. D. J. Am. Chem. Soc. 2005,
127, 17168. (k) Kuninobu, Y.; Kawata, A.; Takai, K. Org. Lett.
2005, 7, 4823. (l) Ochida, A.; Ito, H.; Sawamura, M. J. Am. Chem.
Soc. 2006, 128, 16486. (m) Deng, C.-L.; Song, R.-J.; Guo, S.-M.;
Wang, Z.-Q.; Li, J.-H. Org. Lett. 2007, 9, 5111. (n) Pan, J.-H.;
Yang, M.; Gao, Q.; Zhu, N.-Y.; Yang, D. Synthesis 2007, 2539.
(o) Deng, C.-L.; Song, R.-J.; Liu, Y.-L.; Li, J.-H. Adv. Syn. Cat.
2009, 351, 3096. (p) Yang, T.; Ferrali, A.; Sladojevich, F.;
14. Rhee, J. U.; Krische, M. J. Org. Lett. 2005, 7, 2493 and references
therein.
15. To the best of our knowledge, the indium-promoted 1,3-migration
of an allylic hydroxy group is not known. However, Baba and
coworkers have reported C-O bond activation of allylic alcohols
with InCl3 and its application to C-C bond formation with carbon
nucleophiles: (a) Yasuda, M.; Somyo, T.; Baba, A. Angew. Chem.,
Int. Ed. 2006, 45, 793. In addition, Brønsted acids effectively
promote 1,3-hydroxy migration of allylic alcohols probably via
allylic carbocations: (b) McCubbin, J. A.; Voth, S.; Krokhin, O. V.
J. Org. Chem. 2011, 76, 8537. These reports suggest the
possibility of the 1,3-rearrangement of intermediate 8.
Supplementary Material
Supplementary data associated with this article can be found,