424
H.-J. Knölker et al.
LETTER
ganic Synthesis, Vol. 1, (Eds.: M. Beller, C. Bolm), Wiley-
VCH, Weinheim, 1998, chap. 3.13, p. 534.
1,3-diene ligand in equatorial and the (1-h)-1-azabuta-
1,3-diene ligand in axial position. At this stage of the cat-
alytic cycle the enantioselection is achieved. The coordi-
nation of the metal center to one of the two enantiotopic
faces of the methoxy-substituted double bond leads to di-
astereoisomeric complexes which are differentiated. Loss
of the azadiene from this intermediate regenerates the cat-
alyst 9. A haptotropic migration (h2 to h4) of the tricarbo-
nyliron fragment provides complex 7a. This final
isomerization occurs with retention of configuration,
since the metal remains bound to the same enantiotopic
face of the prochiral ligand. The course of this first cata-
lytic cycle is supported by previous work on (h4-1-aza-
buta-1,3-diene)tricarbonyliron complexes18 and our own
mechanistic studies.8c,10,19
Reaction of the chiral (h4-azadiene)tricarbonyliron com-
plex 15 with additional pentacarbonyliron affords the
chiral diiron cluster 17, which also represents a catalyst
for the asymmetric complexation of 6a with pentacarbon-
yliron. However, our initial results indicate that the asym-
metric induction via this second catalytic cycle is lower.
This observation is of high importance for the future de-
sign of novel more efficient chiral catalysts and for opti-
mizing the reaction conditions of the asymmetric catalytic
complexation.
(3) P. W. Howard, G. R. Stephenson, S. C. Taylor, J. Chem. Soc.
Chem. Commun. 1988, 1603; P. W. Howard, G. R. Stephen-
son, S. C. Taylor, J. Chem. Soc. Chem. Commun. 1990, 1182;
A. J. Pearson, W. J. Youngs, Organometallics 1994, 13, 4; H.-
G. Schmalz, E. Hessler, J. W. Bats, G. Dürner, Tetrahedron
Lett. 1994, 35, 4543.
(4) N. W. Alcock, D. H. G. Crout, C. M. Henderson, S. E. Tho-
mas, J. Chem. Soc. Chem. Commun. 1988, 746; J. A. S.
Howell, M. G. Palin, G. Jaouen, S. Top, H. E. Hafa, J. M.
Cense, Tetrahedron: Asymmetry 1993, 4, 1241; M. Uemura,
H. Nishimura, S. Yamada, Y. Hayashi, K. Nakamura, K.
Ishihara, A. Ohno, Tetrahedron: Asymmetry 1994, 5, 1673.
(5) A. J. Birch, B. M. R. Bandara, Tetrahedron Lett. 1980, 21,
2981; A. Monpert, J. Martelli, R. Grée, R. Carrié, Tetrahedron
Lett. 1981, 22, 1961; M. Franck-Neumann, C. Briswalter, P.
Chemla, D. Martina, Synlett 1990, 637; S. Nakanishi, H.
Yamamoto, Y. Otsuji, H. Nakazumi, Tetrahedron: Asymmetry
1993, 4, 1969.
(6) A. J. Birch, W. D. Raverty, G. R. Stephenson, Tetrahedron
Lett. 1980, 21, 197; A. J. Birch, W. D. Raverty, G. R. Stephen-
son, Organometallics 1984, 3, 1075.
(7) For a brief review on tricarbonyliron transfer reagents, see:
H.-J. Knölker, in Encyclopedia of Reagents for Organic Syn-
thesis, Vol.1, (Ed.: L. A. Paquette), Wiley, Chichester, 1995,
p. 333.
(8) a) H.-J. Knölker, P. Gonser, Synlett 1992, 517; b) H.-J. Knöl-
ker, P. Gonser, P. G. Jones, Synlett 1994, 405; c) H.-J. Knöl-
ker, G. Baum, P. Gonser, Tetrahedron Lett. 1995, 36, 8191;
d) H.-J. Knölker, H. Goesmann, P. Gonser, Tetrahedron Lett.
1996, 37, 6543.
Experimental Procedure
(9) H.-J. Knölker, G. Baum, N. Foitzik, H. Goesmann, P. Gonser,
P. G. Jones, H. Röttele, Eur. J. Inorg. Chem. 1998, 993.
(10) H.-J. Knölker, E. Baum, P. Gonser, G. Rohde, H. Röttele, Or-
ganometallics 1998, 17, 3916.
(11) H.-J. Knölker, H. Hermann, Angew. Chem. 1996, 108, 363;
Angew. Chem. Int. Ed. Engl. 1996, 35, 341.
(12) T. Hattori, M. Shijo, S. Kumagai, S. Miyano, Chem. Express
1991, 6, 335; T. Hattori, H. Hotta, T. Suzuki, S. Miyano, Bull.
Chem. Soc. Jpn. 1993, 66, 613; P. Metz, B. Hungerhoff, J.
Org. Chem. 1997, 62, 4442.
A
solution of 6a (220 mg, 2.00 mmol), pentacarbonyliron
(1.05 mL, 1.57 g, 8.01 mmol), and (R)-5 or (S)-5 (188 mg,
0.5 mmol) in anhydrous and degassed benzene (30 mL) was heated
at reflux for 12 d under an argon atmosphere. The cold reaction
mixture was filtered through a short path of Celite, which was sub-
sequently washed several times with diethyl ether. Evaporation of
the solvent and flash chromatography (pentane) of the residue on
silica gel afforded the complexes (S)-7a ([a]20 = +108.0, c = 1.00,
D
CHCl3) or (R)-7a (([a]20 = -106.2, c = 1.07, CHCl3), respectively
D
1
(498 mg, 99%) as yellow oils. H NMR (500 MHz, CDCl3): d =
(13) H. Kunz, W. Sager, Angew. Chem. 1987, 99, 595; Angew.
Chem. Int. Ed. Engl. 1987, 26, 557; W. Pfrengle, H. Kunz, J.
Org. Chem. 1989, 54, 4261; H. Kunz, W. Sager, D. Schanzen-
bach, M. Decker, Liebigs Ann. Chem. 1991, 649.
(14) H.-J. Knölker, P. Gonser, T. Koegler, Tetrahedron Lett. 1996,
37, 2405.
1.66-1.72 (m, 2 H), 1.75-1.84 (m, 1 H), 2.24 (m, 1 H), 2.95 (m, 1 H),
3.46 (s, 3 H), 5.04 (dd, J = 6.3, 4.5 Hz, 1 H), 5.32 (d, J = 4.5 Hz, 1
H).
Acknowledgement
(15) (R)-8: mp 123-124°C; [a]20 = +1418.4 (c = 1.0, CHCl3); IR
D
This work was supported by the Deutsche Forschungsgemeinschaft
(Gerhard-Hess-Förderpreis) and the Fonds der Chemischen Indu-
strie. We are grateful to Professor H. Kunz, Universität Mainz, for
a generous gift of 2,3,4,6-tetra-O-pivaloyl-b-D-galactopyranosyl-
amine. We thank the BASF AG, Ludwigshafen, for constant supply
with pentacarbonyliron.
(drift): = 3000, 2927, 2060, 2021, 2011, 1969, 1590, 1487,
1279, 1253, 1119, 1025 cm-1; 1H NMR (500 MHz, CDCl3): d
= 0.74 (d, J = 8.6 Hz, 1 H), 1.17 (s, 3 H), 1.35 (s, 3 H), 2.08
(m, 1 H), 2.43 (m, 2 H), 3.21 (d, J = 18.0 Hz, 1 H), 3.32 (d, J
= 18.0 Hz, 1 H), 3.47 (br s, 1 H), 3.83 (s, 3 H), 4.25 (br s, 1 H),
6.73 (d, J = 8.0 Hz, 1 H), 6.78 (t, J = 8.0 Hz, 1 H), 6.97 (m, 1
H), 7.08 (t, J = 8.0 Hz, 1 H); 13C NMR and DEPT (125 MHz,
CDCl3): d = 22.07 (CH3), 26.35 (CH3), 32.66 (CH2), 41.45
(C), 43.33 (CH), 43.61 (CH2), 44.72 (CH), 54.48 (CH3), 78.15
(CH2), 110.67 (CH), 117.12 (C), 120.26 (CH), 126.18 (CH),
126.78 (CH), 145.75 (C), 153.44 (C), 168.07 (C), 206.48
(CO), 209.79 (CO), 211.92 (CO), 212.01 (CO); analysis calcd.
for C23H21Fe2NO7: C 51.62, H 3.96, N 2.62; found: C 51.50,
H 4.09, N 2.97.
References and Notes
(1) Part 48: H.-J. Knölker, H. Goesmann, R. Klauss, Angew.
Chem. 1999, 111; Angew. Chem. Int. Ed. Engl. 1999, 38, in
print.
(2) For reviews, see: A. J. Pearson, Iron Compounds in Organic
Synthesis, Academic Press, London, 1994, chap. 4 and 5; R.
Grée, J.-P. Lellouche in Advances in Metal-Organic Chemi-
stry, Vol. 4, (Ed.: L. S. Liebeskind), JAI Press, Greenwich
(CT), 1995, p. 129; H.-J. Knölker in Transition Metals for Or-
(16) X-ray crystal structure analysis of (R)-8: C46H42Fe4N2O14, mo-
noclinic (twin), space group C2, a = 34.426(7), b = 8.971(2),
c = 15.005(3) Å, V = 4634.1(16) Å3, Z = 4, T = 200(2) K, rcalcd
= 1.534 g cm-3, m = 1.296 mm-1, l = 0.71073 Å, q range: 2.71-
Synlett 1999, No. 4, 421–425 ISSN 0936-5214 © Thieme Stuttgart · New York