Inorg. Chem. 1998, 37, 1131-1134
1131
A Discrete Chlorotellurate [Cl4Te-Mn(CO)5]-:
Scheme 1
Coordinative Addition of the Metalloanion
[Mn(CO)5]- to TeCl4
Wen-Feng Liaw,*,† Show-Jen Chiou,†
Gene-Hsiang Lee,‡ and Shie-Ming Peng§
Department of Chemistry, National Changhua University of
Education, Changhua 50058, Taiwan,
and Instrumentation Center and Department of Chemistry,
National Taiwan University, Taipei 10764, Taiwan
ReceiVed July 9, 1997
Introduction
Scheme 2
The reaction of the chalcogen(IV) halide gives rise to an
extensive chemistry.1 Some known reactions are outlined in
Scheme 1: a degradation to tri-, di-, and mononuclear halotel-
lurate in solution from (TeCl4)4 (Scheme 1a),2 a metathesis
reaction to organochalcogen halides/organochalcogenide (Scheme
lb),3 the formation of [TeCl3][AlCl4] and [PCl4][TeCl5] in the
reaction of TeCl4 with both Lewis acids (AlCl3) and Lewis bases
(PCl5), respectively (Scheme 1c,d),4 the formation of hydronium
halochalcogenates by reaction of chalcogen halides with aqueous
acids (Scheme 1e),1,5 and an oxidative addition to rhodium(I)
compound (Scheme 1f).6
Recent work in our group has shown that oxidative addition
of diorganyl dichalcogenides to coordinatively unsaturated, low-
valent, anionic [Mn(CO)5]- led to the formation of cis-[Mn-
(CO)4(ER)2]- (E ) Se, Te, S; R ) phenyl, alkyl) complexes.10
We report here the reaction of TeCl4 and [Mn(CO)5]-, which
results in the formation of a discrete chlorotellurate [Cl4Te-
Mn(CO)5]-.
Also, synthetic strategies for transition-metal-telluride com-
pounds have been based on TeCl4 as the straightforward
synthesis route (Scheme 1g).7,8 In spite of the large number of
dimeric and trimeric halotellurates known1 and the possible
discrete pentahalotellurate TeCl5- without any secondary bond-
ing interactions proposed,9 we noticed the only example of a
nonassociated mononuclear nonoctahedral chlorotellurate(IV)
of the type XY5E (X ) chalcogen, E ) lone-pair electron) is
limited to tetragonal pyramidal TeCl4(OR)- (R ) H, CH3, C2H5,
C5H9) with the inert pair at Te in the trans position to the OR-
ligand.1,5
Results and Discussion
Although oxidative addition across the Te-Cl bond of TeCl4
to [Mn(CO)5]- (Scheme 2a) or nucleophilic displacement
(Scheme 2b) might be expected to be the preferred process in
the reaction of TeCl4 and [PPN][Mn(CO)5], the failure to
observe these two possible reaction routes in the case of
[Mn(CO)5]- is surprising since the facility of the d8 configu-
ration of [Mn(CO)5]- and [RTeFe(CO)4]- to lose two electrons
(oxidative addition) is well-known.10,11 Contrary to this ex-
pectation, the discrete mononuclear chlorotellurate adduct [Cl4-
Te-Mn(CO)5]- (Scheme 2c) was obtained from reaction of
[PPN][Mn(CO)5] and TeCl4 in THF at -15 °C. The light green
[Cl4Te-Mn(CO)5]- is soluble in common organic solvents, such
as THF, CH3CN, and MeOH, and can be crystallized from vapor
† National Changhua University of Education.
‡ Instrumentation Center, National Taiwan University.
§ Department of Chemistry, National Taiwan University.
(1) (a) Krebs, B.; Ahlers, F.-P. AdV. Inorg. Chem. 1990, 35, 235. (b)
Haiduc, I.; King, R. B.; Newton, M. G. Chem. ReV. 1994, 94, 301.
(c) Chivers, T.; Gao, X.; Parvez, M. Inorg. Chem. 1996, 35, 9.
(2) Krebs, B.; Rieskamp, N.; Scha¨ffer, A. Z. Anorg. Allg. Chem. 1986,
532, 118.
(3) (a) Bjo¨rgvinsson, M.; Roesky, H. W.; Pauer, F.; Stalke, D.; Sheldrick,
G. M. Inorg. Chem. 1990, 29, 5140. (b) Drake, J. E.; Khasrou, L. N.;
Mislankar, A. G.; Ratnani, R. Inorg. Chem. 1994, 33, 6154. (c)
Gedrige, R. W., Jr.; Harris, D. C.; Higa, K. T.; Nissan, R. A.
Organometallics 1989, 8, 2817. (d) Chivers, T.; Gao, X.; Parvez, M.
J. Am. Chem. Soc. 1995, 117, 2359. (e) Al-Salim, N.; West, A A.;
McWhinnie, W. R.; Hamor, T. A. J. Chem. Soc., Dalton Trans. 1988,
2363. (f) Haas, A.; Pryka, M. J. Chem. Soc., Chem. Commun. 1993,
993. (g) Alcock, N. W.; Harrison, W. D. J. Chem. Soc., Dalton Trans.
1984, 869.
(10) (a) Liaw, W.-F.; Ou, D.-S.; Li, Y.-S.; Lee, W.-Z.; Chuang, C.-Y.;
Lee, Y.-P.; Lee, G.-H.; Peng, S.-M. Inorg. Chem. 1995, 34, 3747. (b)
Liaw, W.-F.; Chuang, C.-Y.; Lee, W.-Z.; Lee, C.-K.; Lee, G.-H.; Peng,
S.-M. Inorg. Chem. 1996, 35, 2530. (c) Liaw, W.-F.; Lee, W.-Z.;
Wang, C.-Y.; Lee, G.-H.; Peng, S.-M. Inorg. Chem. 1997, 36, 1253.
(d) Liaw, W.-F.; Ching, C.-Y.; Lee, C.-K.; Lee, G.-H.; Peng, S. M. J.
Chin. Chem. Soc. (Taipei) 1996, 43, 427.
(4) (a) Christian, B. H.; Collins, M. J.; Gillespie, R. J.; Sawyer, J. F. Inorg.
Chem. 1986, 25, 777. (b) Krebs, B.; Buss, B.; Berger, W. Z. Anorg.
Allg. Chem. 1973, 397, 1.
(5) Collins, P. H.; Webster, M. J. Chem. Soc., Dalton Trans. 1974, 1545.
(6) Ebsworth, E. A. V.; Holloway, J. H.; Watson, P. G. J. Chem. Soc.,
Chem. Commun. 1991, 1443.
(7) Bachman, R. E.; Whitmire, K. H. Inorg. Chem. 1994, 33, 2527.
(8) Beck, J. Angew. Chem., Int. Ed. Engl. 1994, 33, 163.
(9) (a) Scho¨nherr, T. Z. Naturforsch. 1988, 43b, 159. (b) Ozin, G. A.;
Vander Voet, A. Can. J. Chem. 1971, 49, 704.
(11) (a) Liaw, W.-F.; Chiang, M.-H.; Liu, C.-J.; Harn, P.-J.; Liu, L.-K.
Inorg. Chem. 1993, 32, 1536. (b) Liaw, W.-F.; Ou, D.-S.; Horng, Y.-
C.; Lai, C.-H.; Lee, G.-H.; Peng, S.-M. Inorg. Chem. 1994, 33, 2495.
(c) Liaw, W.-F.; Lai, C.-H.; Lee, C.-K.; Lee, G.-H.; Peng, S.-M. J.
Chem. Soc., Dalton Trans. 1993, 2421. (d) Liaw, W.-F.; Lai, C.-H.;
Chiang, M.-H.; Hsieh, C.-K.; Lee, G.-H.; Peng, S.-M. J. Chin. Chem.
Soc. (Taipei) 1993, 40, 437.
S0020-1669(97)00867-7 CCC: $15.00 © 1998 American Chemical Society
Published on Web 02/18/1998