2034
Y. M. A. Yamada et al.
LETTER
(10) General procedure for the oxidation of sulfides to
Fundamental and Applied Catalysis; Kluwer Academic
Pubs: Norwell, MA, 2000. (b) Hodnett, K. Heterogeneous
Catalytic Oxidation; Wiley: New York, 2000.
sulfones catalyzed by catalyst 1: The mixture of 1, 4 and
35–40% H2O2 aqueous solution was shaken by PetiSyther®
(Shimadzu Scientific Research Inc. Japan) at 700 rpm at 50
°C for 4–7 h, it was diluted with EtOAc and filtered. To the
filtrate was added saturated Na2S2O3 and brine, and it was
extracted with EtOAc ( 3), dried over Na2SO4, filtered,
dried in vacuo, and purified by column chromatography to
give the products. While the shaker (PetiSyther®) for solid-
phase syntheses was used in these reactions, the glassware
vessel equipped with a magnetic stirrer can be also used.
(11) For examples of the oxidation of sulfides to sulfones by
homogeneous tungsten catalysts, see: (a) Schultz, H. S.;
Freyermuth, H. B.; Buc, S. R. J. Org. Chem. 1963, 28, 1140.
(b) Ishii, Y.; Tanaka, H.; Nishiyama, Y. Chem. Lett. 1994, 1.
(c) Stec, Z.; Zawadiak, J.; Skibinski, A.; Pastuch, G. Polish
J. Chem. 1996, 70, 1121. (d) Neumann, R.; Juwiler, D.
Tetrahedron 1996, 52, 8781. (e) Gresley, N. M.; Griffith,
W. P.; Laemmel, A. C.; Nogueira, H. I. S.; Perkin, B. C. J.
Mol. Catal. 1997, 117, 185. (f) Collins, F. M.; Lucy, A. R.;
Sharp, C. J. Mol. Catal. 1997, 117, 397. (g) Yasuhara, Y.;
Yamaguchi, S.; Ichihara, J.; Nomoto, T.; Sasaki, Y.
Phosphorus Res. Bull. 2000, 11, 43. (h) Sato, K.; Hyodo,
M.; Aoki, M.; Zheng, X.-Q.; Noyori, R. Tetrahedron 2001,
57, 2469.
(4) For recent developments and improvements for the
oxidation of amines, see: (a) Reddy, J. S.; Jacobs, P. A. J.
Chem. Soc., Perkin Trans. 1 1993, 22, 2665. (b) Joseph, R.;
Sudalai, A.; Ravindranathan, T. Synlett 1995, 11, 1177.
(c) Joseph, R.; Ravindranathan, T.; Sudalai, A. Tetrahedron.
Lett. 1995, 36, 1903. (d) Delaude, L.; Laszlo, P. J. Org.
Chem. 1996, 61, 6360. (e) Dewkar, G. K.; Nikalje, M. D.;
Ali, I. S.; Paraskar, A. S.; Jagtap, H. S.; Sudalai, S. Angew.
Chem. Int. Ed. 2001, 40, 405. (f) For recent developments
and improvements for the oxidation of sulfides to sulfones,
see: Dell’Anna, M. M.; Mastrorilli, P.; Nobile, C. F. J. Mol.
Catal. A: Chem. 1996, 108, 57. (g) Alcon, M. J.; Corma, A.;
Iglesias, M.; Sanchez, F. J. Mol. Catal. A: Chem. 2002, 178,
253.
(5) (a) Yamada, Y. M. A.; Ichinohe, M.; Takahashi, H.;
Ikegami, S. Org. Lett. 2001, 3, 1837. (b) Yamada, Y. M. A.;
Ichinohe, M.; Takahashi, H.; Ikegami, S. Tetrahedron Lett.
2002, 43, 3431. (c) Yamada, Y. M. A.; Takeda, K.;
Takahashi, H.; Ikegami, S. Org. Lett. 2002, 4, 3371.
(6) General Procedure for the oxidation of amines catalyzed
by catalyst 1: To a suspension of 15a (40 mg; 5 µmol) and 2
(2.52 mmol) was added 2.5% H2O2 aqueous solution (7.56
mmol) dropwise for 50 min at 0 °C (entry 3: added dropwise
at r.t.; entry 5: added one portion at r.t.). The mixture was
stirred at room temperature (entry 5: 40 °C; entry 7: 0 °C) for
3–24 h, before it was diluted with EtOAc and filtered
through a glass filter. Brine was added to the filtrate, and it
was extracted with EtOAc ( 3). The extract was washed
with brine, dried over Na2SO4, filtered, dried in vacuo, and
purified by column chromatography to give 3.
(12) The reaction with 2.5% H2O2 proceeded slower (55 h) than
that with 35–40% H2O2, providing sulfone 6a in 95% yield.
(13) Noyori et al. reported that the oxidation of sulfides to
sulfoxides proceeded efficiently in hydrogen peroxide
without catalysts, so that we have not examined the selective
oxidation to sulfoxide. See ref.11h
(14) Baudin, J. B.; Hareau, G.; Julia, S. A.; Ruel, O. Tetrahedron
Lett. 1991, 32, 1175.
(7) For examples of the oxidation of amines by homogeneous
tungsten catalysts; for a review, see: Herrmann, W. A.;
Fridgen, J.; Haider, J. J. Peroxide Chemistry; Adam, W.,
Ed.; Wiley: Weinheim, 2000, 406–432.
(8) For examples of the oxidation of amines by homogeneous
tungsten catalysts, see: (a) Ogata, Y.; Tomizawa, K.;
Maeda, H. Bull. Chem. Soc. Jpn. 1980, 53, 285.
(15) (a) Kondo, K.; Tunemoto, D. Tetrahedron Lett. 1975, 17,
1397. (b) Caton, M. P. L.; Coffee, E. C. J.; Watkins, G. L.
Tetrahedron Lett. 1972, 9, 773.
(16) Massart, R.; Contant, R.; Fruchart, J.-M.; Ciabrini, J.-P.;
Fournier, M. Inorg. Chem. 1977, 16, 2916.
(17) Keggin, J. F. Proc. R. Soc. London, Ser. A. 1934, 144, 75.
(18) (a) Brégault et al. reported that heteropolyacidic structure
easily decomposed in the presence of hydrogen peroxide
under the homogeneous conditions, see: Salles, L.; Aubry,
C.; Thouvenot, R.; Robert, F.; Dorémieux-Morin, C.;
Chottard, G.; Ledon, H.; Jeannin, Y.; Brégault, J. Inorg.
Chem. 1994, 33, 871. (b) On the other hand, Ishii et al.
proved that [ -C5H5N+(CH2)15CH3]3PW12O403– maintained
the structure closed to Keggin unit after treatment with
hydrogen peroxide. See ref.11b
(b) Murahashi, S.; Mitsui, H.; Shiota, T.; Tsuda, T.;
Watanabe, S. J. Org. Chem. 1990, 55, 1736. (c) Sakaue, S.;
Sakata, Y.; Ishii, Y. Chem. Lett. 1992, 289. (d) Marcantoni,
E.; Petrini, M.; Polimanti, O. Tetrahedron Lett. 1995, 36,
3561. (e) Ballistreri, F. P.; Barbuzzi, E. G. M.; Tomaselli, G.
A. J. Org. Chem. 1996, 61, 6381.
(9) The reaction of 2c was performed in CH2Cl2 (0.25 M) at
room temperature for 95 h, providing 3c and 3c in 95% yield
(3c/3c = 1.76:1). Even in the reaction of 3c or 3c with
CH2Cl2, isomerizations were hardly observed.
Synlett 2002, No. 12, 2031–2034 ISSN 0936-5214 © Thieme Stuttgart · New York