Ruthenium Dihydrogen Complexes
Organometallics, Vol. 17, No. 10, 1998 2053
have been reported for other complexes,11 for example,
[IrH(H2)(bq)(PPh3)2]+ (bq ) 7,8-benzoquinolinate) by
BuLi, [Os(H2)(NH3)5]2+ by NaOMe, and [Os(H2)(CO)-
(bpy)(PPh3)2]2+ by Et2O. These studies show that
acidity of dihydrogen complexes can vary widely de-
pending on ligands and metals.
reported,14a,b,i and the isostructural complexes
[RCnRu(H2)(L)(L′)]2+ are virtually unknown. While pKa
values of complexes of the type [(C5R5)Ru(H2)(L)(L′)]+
have been reported,5,6 that of the isostructural Tp and
RCn complexes have not been well studied. We report
here the synthesis and properties of some ruthenium
complexes supported by 1,4,7-triazacyclononane and
1,4,7-trimethyl-1,4,7-triazacyclononane ligands and the
acidity of [RCnRu(H2)(L)(L′)]2+ and [TpRu(H2)(L)(L′)]+.
Cyclopentadienyls,12 hydrotris(pyrazolyl)borates,13,14
and 1,4,7-triazacyclononane derivatives (RCn)15,16 are
very useful ligands in organometallic chemistry and
homogeneous catalysis. The three ligands are similar
in that they all coordinate to metals in a facial geometry
and are formally 6e donors on ionic model. They are
different in their π-accepting ability, with cyclopenta-
dienyls being the strongest and 1,4,7-triazacyclononane
derivatives the weakest. It is therefore expected that
the three ligands should show differences in stabilizing
dihydrogen ligands and in affecting the acidity of the
resulting dihydrogen and hydride complexes. However,
such comparison has not been made yet. Despite that
numerous complexes of the formula [(C5R5)RuH2(L)-
(L′)]+ (L,L′ ) neutral ligands such as monophosphines,
diphosphines, CO, solvent molecules) are known,5,6,17
only a few [TpRu(H2)(L)(L′)]+ complexes have been
Resu lts a n d Discu ssion
Syn th esis a n d Ch a r a cter iza tion of [RCn (H2)(L)-
(L′)]2+ Com plexes. The dihydrogen complexes [RCnRu-
(H2)(L)(L′)]2+ (5-8) were synthesized by protonation of
the corresponding monohydride complexes 1-4 with
HBF4‚Et2O or CF3SO3H (eq 1).
(11) See for example: (a) Lough, A. J .; Park, S.; Ramchandran, R.;
Morris, R. H. J . Am. Chem. Soc. 1994, 116, 8356. (b) Schlaf, M.; Lough,
A. J .; Morris, R. H. Organometallics 1993, 12, 3808. (c) Crabtree, R.
H.; Lavin, M. J . Chem. Soc., Chem. Commun. 1985, 794. (d) Crabtree,
R. H.; Lavin, M.; Bonneviot, L. J . Am. Chem. Soc. 1986, 108, 4032. (e)
Baker, M. V.; Field, L. D.; Young, D. J . J . Chem. Soc., Chem. Commun.
1988, 546. (f) Van Der Sluys, L. S.; Miller, M. M.; Kubas, G. J .; Caulton,
K. G. J . Am. Chem. Soc. 1991, 113, 2513. (g) Bicnchini, C.; Perez, P.
J .; Peruzzini, M.; Zanobini, F.; Vacca, A. Inorg. Chem. 1991, 30, 279.
(h) Sellman, D.; Ka¨ppler, J .; Moll, M. J . Am. Chem. Soc. 1993, 115,
1830. (i) Mudalige, D. C.; Rettig, S. J .; J ames, B. R.; Cullen, W. R. J .
Chem. Soc., Chem. Commun. 1993, 830. (j) Bianchini, C.; Linn, K.;
Masi, D.; Peruzzini, M.; Polo, A.; Vacca, A.; Zanobini, F. Inorg. Chem.
1993, 32, 2366. (k) Heinekey, D. M.; Luther, T. A. Inorg. Chem. 1996,
35, 4396. (l) Heinekey, D. M.; Voges, M. H.; Barnhart, D. M. J . Am.
Chem. Soc. 1996, 118, 10792.
The starting monohydride complexes [MeCnRuH(dppe)]-
CF3SO3 (3)16d and [MeCnRuH(CO)(PPh3)]PF6 (4)16d are
known compounds. The monohydride complex [HCnRuH-
(PPh3)2]BF4 (1) was prepared by reacting HCn with
RuHCl(PPh3)3 in the presence of NaBF4. We have
attempted to prepare the analogous complex [MeCnRuH-
(PPh3)2]BF4 by using MeCn in place of HCn. However,
the preparation was not successful and some intractable
materials were obtained. Failure of the reaction is
probably due to large steric interaction between tri-
phenylphosphine and the sterically more demanding
MeCn ligand. The complex [HCnRuH(CO)(PPh3)]BF4 (2)
was prepared by refluxing a mixture of HCn and RuHCl-
(CO)(PPh3)3 in 2-methoxyethanol, followed by precipita-
tion with NaBF4. A similar procedure has been used
previously for the preparation of [MeCnRuH(CO)(PPh3)]-
PF6 (4).16d
The new monohydride complexes can be readily
characterized by their NMR, IR, and elemental analysis.
The structure of complex 1 has also been confirmed by
X-ray diffraction. The molecular structure of the cation
[HCnRuH(PPh3)2]+ is shown in Figure 1. Crystal-
lographic details and selected bond distances and angles
are given in Tables 1 and 2, respectively.
(12) Crabtree, R. H. The Organometallic Chemistry of the Transition
Metals, 2nd ed.; J ohn Wiley & Sons: New York, 1994.
(13) Reviews on Tp complexes: (a) Trofimenko, S. Chem. Rev. 1993,
93, 943. (b) Trofimenko, S. Prog. Inorg. Chem. 1986, 34, 115. (c)
Trofimenko, S. Chem. Rev. 1972, 72, 497. (d) Trofimenko, S. Acc. Chem.
Res. 1971, 4, 17.
(14) For recent work on tris(pyrazolyl)borato dihydrogen complexes,
see for example: (a) Chen, Y. Z.; Chan, W. C.; Lau, C. P.; Chu, H. S.;
Lee, H. L.; J ia, G. Organometallics 1997, 16, 1241. (b) Chan, W. C.;
Lau, C. P.; Chen, Y. Z.; Fang, Y. Q.; Ng, S. M.; J ia, G. Organometallics
1997, 16, 34. (c) Bohanna, C.; Esteruelas, M. A.; Go´mez, A. V.; Lo´pez,
A. M.; Mart´ınez, M.-P. Organometallics 1997, 16, 4464. (d) Eckert, J .;
Albinati, A.; Bucher, U. E.; Venanzi, L. M. Inorg. Chem. 1996, 35, 1292.
(e) Vicente, C.; Shul’pin, G. G.; Moreno, B.; Sabo-Etienne, S.; Chaudret,
B. J . Mol. Catal. A: Chem. 1995, 98, L5. (f) Moreno, B.; Sabo-Etienne,
S.; Chaudret, B.; Rodriguez, A.; J alon, F.; Trofimenko, S. J . Am. Chem.
Soc. 1995, 117, 7441. (g) Moreno, B.; Sabo-Etienne, S.; Chaudret, B.
J . Am. Chem. Soc. 1994, 116, 2635. (h) Heinekey, D. M.; Oldham, W.
J ., J r. J . Am. Chem. Soc. 1994, 116, 3137. (i) Halcrow, M. A.; Chaudret,
B.; Trofimenko, S. J . Chem. Soc., Chem. Commun. 1993, 465. (j)
Bucher, U. E.; Lengweiler, T.; Nanz, D.; von Philipsborn, W.; Vernanzi,
L. M. Angew. Chem., Int. Ed. Engl. 1990, 29, 548.
(15) Flood’s notation is adopted with slight modification: HCn )
1,4,7-triazacyclononane; MeCn ) 1,4,7-trimethyl-1,4,7-triazacyclononane.
(16) For recent work on RCn complexes, see for example: (a) Yang,
S. M.; Chen, M. C. W.; Cheung, K. K.; Che, C. M.; Peng, S. M.
Organometallics 1997, 16, 2819. (b) Wang, L.; Sowa, J . R., J r.; Wang,
C.; Lu, R. S.; Gassman, P. G.; Flood, T. C. Organometallics 1996, 15,
4240. (c) Wang, L.; Wang, C.; Bau, R.; Flood, T. C. Organometallics
1996, 15, 491. (d) Yang, S. M.; Cheng, W. C.; Peng, S. M.; Cheung, K.
K.; Che, C. M. J . Chem. Soc., Dalton Trans. 1995, 2955. (e) Yang, S.
M.; Cheng, W. C.; Cheung, K. K.; Che, C. M.; Peng, S. M. J . Chem.
Soc., Dalton Trans. 1995, 227. (f) Wang, C.; Ziler, J . W.; Flood, T. C.
J . Am. Chem. Soc. 1995, 117, 1647. (g) Cheng, W. C.; Yu, W. Y.;
Cheung, K. K.; Che, C. M. J . Chem. Soc., Dalton Trans. 1994, 57. (h)
Cheng, W. C.; Yu, W. Y.; Cheung, K. K.; Che, C. M. J . Chem. Soc.,
Chem. Commun. 1994, 1063. (i) Wang, L.; Lu, R. S.; Bau, R.; Flood, T.
C. J . Am. Chem. Soc. 1993, 115, 6999. (j) Wang, C.; Flood, T. C. J .
Am. Chem. Soc. 1992, 114, 3169. (k) Sun, N. Y.; Simpson, S. J . J .
Organomet. Chem. 1992, 434, 341.
The structure could be described as a distorted
octahedron with the hydride trans to N(2). The distor-
tion can be attributed to the coordination geometry of
(17) (a) de los R´ıos, I.; Tenorio, M. J .; Padilla, J .; Puerta, M. C.;
Valerga, P. Organometallics 1996, 15, 4565. (b) Lemke, F. R.; Bram-
mer, L. Organometallics 1995, 14, 3980. (c) Conroy-Lewis, F. M.;
Simpson, S. J . J . Chem. Soc., Chem. Commun. 1986, 506. (d) Conroy-
Lewis, F. M.; Simpson, S. J . J . Chem. Soc., Chem. Commun. 1987,
1675. (e) Wilczewski, T. J . Organomet. Chem. 1989, 361, 219. (f) Chinn,
M. S.; Heinekey, D. M.; Payne, N. G.; Sofield, C. D. Organometallics
1989, 8, 1824. (g) Klooster, W. T.; Koetzle, T. F.; J ia, G.; Fong, T. P.;
Morris, R. H.; Albinati, A. J . Am. Chem. Soc. 1994, 116, 7677.