Organometallics 1998, 17, 1643-1645
1643
Coop er a tive Rea ctivity of Un su p p or ted Ea r ly-La te
Heter obim eta llics: Rin g Op en in g a n d Su bsequ en t
Deca r bon yla tion of Bia r ylla cton es
Andreas Schneider,† Lutz H. Gade,†,* Matthias Breuning,‡ Gerhard Bringmann,‡
Ian J . Scowen,§ and Mary McPartlin§
Institut fu¨r Anorganische Chemie and Institut fu¨r Organische Chemie der Universita¨t
Wu¨rzburg, Am Hubland, 97074 Wu¨rzburg, Germany, and School of Applied Chemistry,
University of North London, Holloway Road, London N7 8DB, U.K.
Received J anuary 6, 1998
Summary: Reaction of the heterodinuclear complex [HC-
{SiMe2N(2-FC6H3)}3Zr-FeCp(CO)2] (1) with 1,3-di-
methyl-6H-benzo[b]naphtho[1,2-d]pyranone (2) and 1,3-
dimethoxy-6H-benzo[b]-naphtho-[1,2-d]pyranone (3) led
to immediate ring opening of the lactones to yield
products which combine the biaryl fragment with aryl-
oxyzirconium and acyl-FeCp(CO)2 units. The latter
slowly decarbonylate to yield the corresponding hetero-
bimetallic complexes in which the {MCp(CO)2} fragment
is directly bonded to the naphthalene ring.
of Zr-Fe heterobimetallics toward two configuratively
unstable biaryl lactones, 1,3-dimethyl-6H-benzo[b]naph-
tho[1,2-d]pyranone (2) and 1,3-dimethoxy-6H-benzo[b]-
naphtho-[1,2-d]-pyranone (3),5a which constitute sub-
strates for asymmetric lactone cleavage reactions5b as,
e.g., employed in the synthesis of axially chiral biaryl
alkaloids.6,7
Reaction of 2 and 3 with the heterodinuclear complex
[HC{SiMe2N(2-FC6H3)}3Zr-FeCp(CO)2] (1)8 cleanly led
to the ring opening of the lactones with concomitant
cleavage of the metal-metal bond, yielding compounds
Heterobimetallic complexes containing one or more
metal-metal bonds between metals of the Ti-triad and
late transition metals have been studied with the aim
of utilizing the cooperative reactivity of the electrophilic
and nucleophilic metal centers in reactions with polar
organic substrates.1 The combination of complementary
metal complex fragments may, in principle, lead to
highly selective conversions, although direct experimen-
tal evidence is still rare.2 Stabilizing the early transi-
tion metal center by coordination of a tridentate amido
ligand provided unsupported heterobimetallics which
are kinetically sufficiently stable to allow the systematic
investigation of their reactivity.3,4 A characteristic
feature of all the conversions involving zirconium-iron
and -ruthenium complexes studied to date is the high
reactivity of the heterodinuclear compounds and, con-
sequently, the extremely mild reaction conditions which
may be chosen, as well as the selectivity of the chemical
transformations. In this paper, we report the reactivity
1
4 and 5 (Scheme 1).9 A characteristic feature of the H
and 13C NMR spectra of both compounds is the diaste-
reotopic splitting of the methyl resonances of the SiMe2
units in the tripod ligand and the chemical shift of the
signal assigned to the acyl carbon nuclei which is
observed at δ 296.0 and 297.6 for 4 and 5, respectively.
These chemical shifts at extremely low field are indica-
tive of the coordination of the acyl oxygen atoms to the
Lewis acidic zirconium centers, thus forming an eight-
membered metallacycle in which the biaryl unit is
(5) (a) Bringmann, G.; Hartung, T.; Go¨bel, L.; Schupp, O.; Ewers,
C. L. J .; Scho¨ner, B.; Zagst, R.; Peters, K.; von Schnering, H. G.;
Burschka, C. Liebigs Ann. Chem. 1992, 225. (b) Bringmann, G.;
Schupp, O. S. Afr. J . Chem. 1994, 47, 83.
(6) Bringmann, G.; Pokorny, F. in The Alkaloids; Cordell, G., Ed.;
Academic Press: New York, 1995; Vol. 46, p 127.
(7) Bringmann, G.; Holenz, J .; Weinrich, R.; Ru¨benacker, M.; Funke
C.; Boyd, M. R.; Gulakowski, R. J .; Franc¸ois, G. Tetrahedron 1998,
54, 497.
(8) Memmler, H.; Walsh, K.; Gade, L. H.; Lauher, J . W. Inorg. Chem.
1995, 34, 4062. See also ref 4a.
† Institut fu¨r Anorganische Chemie, Universita¨t Wu¨rzburg.
‡ Institut fu¨r Organische Chemie, Universita¨t Wu¨rzburg.
§ University of North London.
(1) (a) Casey, C. P.; J ordan, R. F.; Rheingold, A. L. J . Am. Chem.
Soc. 1983, 105, 665. (b) Casey, C. P.; J ordan, R. F.; Rheingold, A. L.
Organometallics 1984, 3, 504. (c) Sartain, W. S.; Selegue, J . P. J . Am.
Chem. Soc. 1985, 107, 5818. (d) Sartain, W. S.; Selegue, J . P.
Organometallics 1987, 6, 1812. (e) Sartain, W. S.; Selegue, J . P.
Organometallics 1989, 8, 2153. (f) Selent, D.; Beckhaus, R.; Pickardt,
J . Organometallics 1993, 12, 2857.
(2) (a) Casey, C. P. J . Organomet. Chem. 1990, 400, 205. (b)
Ferguson, G. S.; Wolczanski, P. T.; Parkanyi, L.; Zonnevylle, M.
Organometallics 1988, 7, 1967. (c) Baranger, A. M.; Bergman, R. G. J .
Am. Chem. Soc. 1994, 116, 3822. (c) Hanna, T. A.; Baranger, A. M.;
Bergman, R. G. J . Am. Chem. Soc. 1995, 117, 665.
(9) Data for 4 are as follows. Anal. Calcd for C51H50F3FeN3O4Si3Zr:
C, 57.99; H, 4.74; N, 3.98. Found: C, 57.69; H, 4.78; N, 3.52. 1H NMR
(C6D6, 295 K): δ -0.18 (s, HC(Si...)3), 0.42, 0.55 (s, (Si(CH3)2), 1.74
(6′-CH3), 2.09 (4′-CH3), 3.85 (s, C5H5), 5.62-7.57 (m, 2-FC6H4 and
lactone 2). 13C NMR (C6D6, 295 K): δ 3.9, 4.8 (Si(CH3)2), 7.7 (HC(Si...)3),
2
20.9 (ArCH3), 21.1 (ArCH3), 87.2 (C5H5), 115.2 (d, J FC ) 22.1 Hz, C3
of 2-FC6H4), 120.3 (C4 of 2-FC6H4), 124.2 (C5 of 2-FC6H4), 126.7 (C6 of
2
1
2-FC6H4), 141.8 (d, J FC ) 13.1 Hz, C1 of 2-FC6H4), 157.9 (d, J FC
)
235.4 Hz, C2 of 2-FC6H4), 211.2, 212.2 (CO), 296.2 (ZrO(...)COFe), 115.9,
117.0, 119.4, 121.8, 122.7, 126.1, 126.7, 127.5, 128.5, 132.7, 132.9, 155.2,
161.8 (lactone 2). 19F NMR (C6D6, 295 K): δ -122.0. 29Si NMR (C6D6,
295 K): δ 2.0. IR (benzene): ν(CO) 2028, 1985 cm-1. Data for 5 are as
follows. Anal. Calcd for C51H50F3FeN3O6Si3Zr: C, 56.28; H, 4.60; N,
3.86. Found: C, 56.36; H, 4.77; N, 3.58. 1H NMR (C6D6, 295 K):
δ
(3) (a) Friedrich, S.; Memmler, H.; Gade, L. H.; Li, W.-S.; McPartlin,
M. Angew. Chem., Int. Ed. Engl. 1994, 33, 676. (b) Friedrich, S.;
Memmler, H.; Gade, L. H.; Li, W.-S.; Scowen, I. J .; McPartlin, M.;
Housecroft, C. E. Inorg. Chem. 1996, 35, 2433. (c) Findeis, B.; Schubart,
M.; Platzek, C.; Gade, L. H.; Scowen, I. J .; McPartlin, M. Chem.
Commun. 1996, 219.
(4) (a) Memmler, H.; Kauper, U.; Gade, L. H.; Scowen, I. J .;
McPartlin, M. Chem. Commun. 1996, 1751. (b) Friedrich, S.; Gade, L.
H.; Scowen, I. J .; McPartlin, M. Angew. Chem., Int. Ed. Engl. 1996,
35, 1338.
-0.17 (s, HC(Si...)3), 0.43, 0.54 (s, (Si(CH3)2), 2.96 (6′-CH3), 3.41 (4′-
OCH3), 3.93 (s, C5H5), 5.60-7.50 (m, 2-FC6H4 and lactone 3). 13C NMR
(C6D6, 295 K): δ 4.0, 4.3 (Si(CH3)2), 7.8 (HC(Si...)3), 54.6 (OCH3), 55.4
2
(OCH3), 87.1 (C5H5), 115.2 (d, J FC ) 22.1 Hz, C3 of 2-FC6H4), 120.3
(C4 of 2-FC6H4), 124.2 (C5 of 2-FC6H4), 126.7 (C6 of 2-FC6H4), 141.7 (d,
1
2J FC ) 13.1 Hz, C1 of 2-FC6H4), 157.9 (d, J FC ) 235.4 Hz, C2 of
2-FC6H4), 210.6, 211.5 (CO), 297.6 (ZrO(...)COFe), 115.9, 117.8, 121.8,
123.1, 126.0, 129.5, 132.9, 133.5, 155.7, 158.7, 161.9, 163.7 (lactone
3). 19F NMR (C6D6, 295 K): δ -121.9. 29Si NMR (C6D6, 295 K): δ 2.1.
IR (benzene): ν(CO) 2030, 1991 cm-1
.
S0276-7333(98)00007-7 CCC: $15.00 © 1998 American Chemical Society
Publication on Web 04/09/1998