Zimmerman–Traxler chair-like transition state. In the reaction of
the sterically hindered sulfonylimine 1f with (E)-crotyltrifluorobor-
ate 1c significant amounts of the anti-product 5f were observed
(Table 2, entries 12). In this case some reaction via a boat-like
transition state is possible due to the destabilization of the chair-like
transition state, because of an unfavourable 1,2- axial–equatorial
interaction between the tBu group and the methyl group in 1c.3a
The success of the allyl/crotylation of N-tosylimines 2 using the
salts 1, prompted us to extend the use of allyl/crotylation reagents
to the synthesis of chiral homoallylic amines. We envisaged that
Ellman’s chiral N-tert-butanesulfinamides13 could serve as useful
precursors, having successfully been employed in diastereose-
lective additions of various organometallic reagents (e.g. Grignard
regents14 and organolithiums15). Interestingly, only allyl Grignard
reagents have been added to N-sulfinylimines14b,16 and crotylations
of these compounds have not been previously explored. Sulfinyli-
mine 6 was synthesized according to the literature procedure.17
Under the conditions developed for the allyl/crotylation of N-
tosylimines 2, the allylation of sulfinylimine 6 proceeded smoothly
to give the desired product 7 as a single diastereomer as observed
by 1H NMR (Scheme 2). The acid-labile chiral auxiliary was
readily cleaved by treatment of the product with acid. The
corresponding optically active homoallylic amine 8 was then
obtained in good yield after neutralization.8c,18
In conclusion, we have established an efficient protocol for the
synthesis of protected homoallylic amines using potassium allyl-
and crotyltrifluoroborates. These reagents offer advantages over
existing allylboron reagents, including high yielding additions and
excellent levels of diastereocontrol in the case of crotylation
reactions. An auxiliary base approach using N-tert-butanesulfina-
mides provides a convenient approach to the enantioselective
synthesis of primary homoallylic amines.
This work was supported by the Natural Sciences and Engineer-
ing Research Council of Canada (NSERC). S.-W. Li thanks the
University of Toronto for fellowship support. R.A.B. gratefully
acknowledges receipt of a Premier’s Research Excellence Award.
We thank Dr A. B. Young for mass spectrometric analysis.
Notes and references
1 (a) S. Kobayashi and H. Ishitani, Chem. Rev., 1999, 99, 1069; (b) R.
Block, Chem. Rev., 1998, 98, 1407.
2 (a) S. E. Denmark and J. Fu, Chem. Rev., 2003, 103, 2763; (b) W. R.
Roush, in Comprehensive Organic Synthesis, ed. B. M. Trost, I.
Fleming, and C. H. Heathcock, Pergamon, Oxford, 1991, vol. 2, 1–53;
(c) I. Fleming, in Comprehensive Organic Synthesis, ed. B. M. Trost, I.
Fleming, and C. H. Heathcock, Pergamon, Oxford, 1991, vol. 2,
563–593; (d) Y. Yamamoto and N. Asao, Chem. Rev., 1993, 93, 2207;
(e) J. W. J. Kennedy and D. G. Hall, Angew. Chem. Int. Ed., 2003, 42,
4732; (f) W. R. Roush, in Houben-Weyl, Stereoselective Synthesis, ed.
G. Helmchen, R. W. Hoffmann, J. Mulzer, and E. Schaumann, Georg
Thieme Verlag Stuttgart, New York, 1995, vol. E21b, 1410–1486; (g)
D. S. Matteson, in Stereodirected Synthesis with Organoboranes,
Springer-Verlag, Berlin, 1995, 261–310 and references therein.
3 (a) N. Risch and M. Arend in Houben-Weyl, Stereoselective Synthesis,
ed. G. Helmchen, R. W. Hoffmann, J. Mulzer, and E. Schaumann,
Georg Thieme Verlag Stuttgart, New York, 1995, vol. E21b,
1894–1907; (b) M. Arend, Angew. Chem. Int. Ed., 1999, 38, 2873; (c)
C. O. Puentes and V. Kouznetsov, J. Heterocycl. Chem., 2002, 39,
595.
4 (a) G. Alvaro, C. Boga, D. Savoia and A. Umani-Ronchi, J. Chem. Soc.,
Perkin Trans. 1, 1996, 875; (b) S. Laschat and H. Kunz, J. Org. Chem.,
1991, 56, 5883; (c) J. V. Schaus, N. Jain and J. S. Panek, Tetrahedron,
2000, 56, 10263; (d) J. Legros, F. Meyer, M. Coliboeuf, B. Crousse, D.
Bonnet-Delpon and J.-P. Begue, J. Org. Chem., 2003, 68, 6444.
5 (a) S. Kobayashi, C. Ogawa, H. Konishi and M. Sugiura, J. Am. Chem.
Soc., 2003, 125, 6610; (b) T. Hamada, K. Manabe and S. Kobayashi,
Angew. Chem. Int. Ed., 2003, 42, 3927.
6 (a) K. Nakamura, H. Nakamura and Y. Yamamoto, J. Org. Chem., 1999,
64, 2614; (b) R. A. Fernandes, A. Stimac and Y. Yamamoto, J. Am.
Chem. Soc., 2003, 125, 14133; (c) R. A. Fernandes and Y. Yamamoto,
J. Org. Chem., 2004, 69, 735.
7 H. Nakamura, K. Nakamura and Y. Yamamoto, J. Am. Chem. Soc.,
1998, 120, 4242.
8 (a) S. Itsuno, K. Watanabe, K. Ito, A. A. El-Shehawy and A. A. Sarhan,
Angew. Chem., Int. Ed. Engl., 1997, 36, 109; (b) S. Itsuno, K. Watanabe,
T. Matsumoto, S. Kuroda, A. Yokoi and A. El-Shehawy, J. Chem. Soc.,
Perkin Trans. 1, 1999, 2011; (c) G.-M. Chen, P. V. Ramachandran and
H. C. Brown, Angew. Chem. Int. Ed., 1999, 38, 825.
9 (a) R. A. Batey, A. N. Thadani, D. V. Smil and A. J. Lough, Synthesis,
2000, 990; (b) R. A. Batey , A. N. Thadani and D. V. Smil, Tetrahedron
Lett., 1999, 40, 4289.
10 A. N. Thadani and R. A. Batey, Org. Lett., 2002, 4, 3827.
11 W. Lu and T. H. Chan, J. Org. Chem., 2001, 66, 3467.
12 The relative stereochemistry of compounds 3a, 3b, 3d, 3e, 3f, 4a, 4b,
4d, 4e, 4f were assumed to be analogous.
13 J. A. Ellman, T. D. Owens and T. P. Tang, Acc. Chem. Res., 2002, 35,
984 and references therein.
14 (a) G. Liu, D. A. Cogan and J. A. Ellman, J. Am. Chem. Soc., 1997, 119,
9913; (b) D. A. Cogan, G. Liu and J. Ellman, Tetrahedron, 1999, 55,
8883.
15 A. W. Shaw and S. J. deSolms, Tetrahedron Lett., 2001, 42, 7173.
16 D. H. Hua, S. W. Miao, J. S. Chen and S. Iguchi, J. Org. Chem., 1991,
56, 4.
17 (a) D. J. Weix and J. A. Ellman, Org. Lett., 2003, 5, 1317; (b) G. Liu,
D. A. Cogan, T. D. Owens, T. Tang and J. A. Ellman, J. Org. Chem.,
1999, 64, 1278.
Scheme 2 Asymmetric synthesis of homoallylic amine 7 utilizing potassium
allyltrifluoroborate 1a.
18 T. Basile, A. Bocoum, D. Savoia and A. Umani-Ronchi, J. Org. Chem.,
1994, 59, 7766.
C h e m . C o m m u n . , 2 0 0 4 , 1 3 8 2 – 1 3 8 3
1383