814
J. Syed et al. / Tetrahedron: Asymmetry 9 (1998) 805–815
(dd, J=8.5, 18.5 Hz, 1H, CH2), 4.00–4.03 (m, 1H, CH–N), 5.75 (d, J=3.1 Hz, 1H, CH–O), 7.40–7.47 (m,
+
5H, Ph), 9.02 (broad s, 3H, NH3 ). Minor diastereomer: 4.69 (broad d, J=7.2 Hz, 1H, CH–O).
8b·HCl: 44% yield, 22% de, mp 184; diastereomeric mixture: 1H NMR (DMSO) δ=0.88–0.95 (2t, 6H,
2CH3), 1.20–1.80 (m, 8H, 2CH2CH2), 2.65 (2dd, J=3.6, 18.4 Hz, 2H, 2CH2), 3.05–3.20 (2dd, 2H, 2CH2
interfered), 3.74–3.77 (m, 1H, CH–N), 4.06–4.12 (m, 1H, CH–N), 4.54–4.67 (m, 2H, 2CH–O), 8.80
+
(broad s, 6H, 2NH3 ). Anal. calcd for C7H13NO2·HCl: C, 46.80; H, 7.85; N, 7.80; Cl, 19.73. Found: C,
46.90; H, 7.82; N, 8.01; Cl, 19.69.
8c·HCl: first fraction: 10% yield, 17% de, mp 190°C; second fraction: 29% yield, 43% de, mp 189°C;
1
diastereomeric mixture: H NMR (DMSO) δ=0.86 (broad t, 6H, 2CH3), 1.17–1.75 (m, 28H, 2(CH2)7),
2.64 (2dd, J=3.9, 18.4 Hz, 2H, 2CH2), 3.04–3.19 (2dd, 2H, 2CH2 interfered), 3.72–3.78, 4.03–4.14 (2m,
+
2H, 2CH–N), 4.52–4.65 (m, 2H, 2CH–O), 8.75 (broad s, 6H, 2NH3 ). Anal. calcd for C12H23NO2·HCl:
C, 57.70; H, 9.68; N, 5.61; Cl, 14.19. Found: C, 57.39; H, 9.66; N, 5.45; Cl, 14.24.
Acknowledgements
This work was generously supported by the Bundesministerium für Bildung und Forschung (Zentrales
Schwerpunktprogramm Bioverfahrenstechnik, Stuttgart). We would like to thank Sonja Henkel for the
X-ray crystallographic analysis.
References
1. Enzyme-catalyzed Reactions, Part 32. Part 31: Effenberger, F.; Graef, B. W. J. Biotechnol., in press.
2. (a) Effenberger, F.; Gutterer, B.; Ziegler, T. Liebigs Ann. Chem. 1991, 269–273. (b) Effenberger, F. Angew. Chem. 1994,
106, 1609–1619. Angew. Chem. Int. Ed. Engl. 1994, 33, 1555–1564. (c) Brussee, J.; Dofferhoff, F.; Kruse, C. G.; van der
Gen, A. Tetrahedron 1990, 46, 1653–1658. (d) Jackson, W. R.; Jacobs, H. A.; Matthews, B. R.; Jayatilake, G. S.; Watson,
K. G. Tetrahedron Lett. 1990, 31, 1447–1450.
3. Effenberger, F.; Gutterer, B.; Syed, J. Tetrahedron: Asymmetry 1995, 6, 2933–2943.
4. (a) Blaise, E. E. C. R. Hebd. Seances Acad. Sci. 1901, 132, 478 and 978. (b) Cason, J.; Rinehart Jr., K. L.; Thornton Jr., S.
D. J. Org. Chem. 1953, 18, 1594–1600. (c) Kagan, H. B.; Suen, Y.-H. Bull. Soc. Chim. Fr. 1966, 1819–1822. (d) Hannick,
S. M.; Kishi, Y. J. Org. Chem. 1983, 48, 3833–3835.
5. (a) Anderson, J. R.; Edwards, R. L. J. Chem. Soc., Perkin Trans 1 1982, 215–221. (b) Krepski, L. R.; Lynch, L. E.; Heilmann,
S. M.; Rasmussen, J. K. Tetrahedron Lett. 1985, 26, 981–984.
6. (a) Kitazume, T. J. Fluorine Chem. 1987, 35, 287–294. (b) Duffield, J. J.; Regan, A. C. Tetrahedron: Asymmetry 1996, 7,
663–666.
7. Lee, A. S.-Y.; Cheng, R.-Y. Tetrahedron Lett. 1997, 38, 443–446.
8. (a) Bewley, C. A.; Faulkner, D. J. J. Org. Chem. 1994, 59, 4849–4852. (b) Matsunaga, S.; Fusetani, N.; Hashimoto, K.;
Wälchli, M. J. Am. Chem. Soc. 1989, 111, 2582–2588. (c) Wakamiya, T.; Shiba, T.; Kaneko, T. Bull. Chem. Soc. Jpn 1972,
45, 3668–3672.
9. (a) Shimojima, Y.; Hayashi, H.; Ooka, T.; Shibukawa, M. Tetrahedron 1984, 40, 2519–2527. (b) Shinozaki, K.; Mizuno,
K.; Masaki, Y. Heterocycles 1996, 43, 11–14.
10. Seki, M.; Moriya, T.; Matsumoto, K. Agric. Biol. Chem. 1987, 51, 3033–3038.
11. (a) Takahashi, Y.; Hasegawa, S.; Izawa, T.; Kobayashi, S.; Ohno, M. Chem. Pharm. Bull. 1986, 34, 3020–3024. (b) Nitta,
H.; Hatanaka, M.; Ishimaru, T. J. Chem. Soc., Chem. Commun. 1987, 51–52.
12. McGarvey, G. J.; Williams, J. M.; Hiner, R. N.; Matsubara, Y.; Oh, T. J. Am. Chem. Soc. 1986, 108, 4943–4952.
13. Hoff, H.; Drautz, H.; Fiedler, H.-P.; Zähner, H.; Schultz, J. E.; Keller-Schierlein, W.; Philipps, S.; Ritzau, M.; Zeeck, A. J.
Antibiotics 1992, 45, 1096–1107.
14. Lawson, A. (National Research Development Corp.) Brit. 772,836, Apr. 17, 1957; Chem. Abstr. 1958, 52, 1242b.
15. Rathke, M. W.; Lindert, A. J. Org. Chem. 1970, 35, 3966–3967.
16. Vaughan, W. R.; Bernstein, S. C.; Lorber, M. E. J. Org. Chem. 1965, 30, 1790–1795.