Organometallics
Article
2
(Fo + 2Fc2)/3. All non-hydrogen atoms were refined anisotropically,
6336. (c) Young, R. D.; Hill, A. F.; Hillier, W.; Ball, G. E. J. Am. Chem.
Soc. 2011, 133, 13806−13809.
and hydrogen atoms were included at calculated positions.
2. (tBu3SiN)2(tBu3SiNH)W(cCHCH2CHMe) (1-cPrMe). A colorless
block (0.2 × 0.1 × 0.05 mm) of 1-cPrMe, obtained by slow
evaporation of an Et2O solution, was immersed in polyisobutylene,
extracted on a glass fiber, and placed under a 173 K nitrogen stream on
the goniometer head of a Siemens SMART CCD area detector system
equipped with a fine-focus Mo X-ray tube (λ = 0.710 73 Å).
Preliminary diffraction data revealed a triclinic crystal system, and a
hemisphere routine was used for data collection. The data were
processed via the Bruker SAINT program to afford 17 566 reflections,
10 170 of which were symmetry independent (Rint = 0.1330) and 3161
were greater than 2σ(I). The data was corrected for absorption with
SADABS, and the structure was solved by direct methods (SHELXS),
completed by difference Fourier syntheses, and refined by full-matrix
least-squares procedures (SHELXL).51 The data quality was poor and
the structure was initially solved in P1, until pairs of molecules were
found to be related by an inversion center; the structure was
(3) (a) Lawes, D. J.; Darwish, T. A.; Clark, T.; Harper, J. B.; Ball, G.
E. Angew. Chem., Int. Ed. 2006, 45, 4486−4490. (b) Ball, G. E.;
Brookes, C. M.; Cowan, A. J.; Darwish, T. A.; George, M. W.;
Kawanami, H. K.; Portius, P.; Rourke, J. P. Proc. Natl. Acad. Sci. U.S.A.
2007, 104, 6927−6932.
(4) (a) Bromberg, S. E.; Yang, H.; Asplund, M. C.; Lian, T.;
McNamara, B. K.; Kotz, K. T.; Yeston, J. S.; Wilkens, M.; Frei, H.;
Bergman, R. G.; Harris, C. B. Science 1997, 278, 260−263. (b) Lian,
T.; Bromberg, S. E.; Yang, H.; Prouix, G.; Bergman, R. G.; Harris, C. B.
J. Am. Chem. Soc. 1996, 118, 3769−3770. (c) Asplund, M. C.; Snee, P.
T.; Yeston, Y. S.; Wilkens, M. J.; Payne, C. K.; Yang, H.; Kotz, K. T.;
Frei, H.; Bergman, R. G.; Harris, C. B. J. Am. Chem. Soc. 2002, 124,
10605−10612.
(5) Sawyer, K. R.; Cahoon, J. F.; Shanoski, J. E.; Glascoe, E. A.; King,
M. F.; Schlegel, J. P.; Zoerb, M. C.; Hapke, M.; Hartwig, J. F.; Webster,
C. E.; Harris, C. B. J. Am. Chem. Soc. 2010, 132, 1848−1859.
(6) (a) Calladine, J. A.; Torres, O.; Ansley, M.; Ball, G. E.; Bergman,
R. G.; Curley, J.; Buckett, S. B.; George, M. W.; Gilson, A. I.; Lawes, D.
J.; Perutz, R. N.; Sun, X. Z.; Vollhardt, K. P. C Chem. Sci. 2010, 1,
622−630. (b) Calladine, J. A.; Duckett, S. B.; George, M. W.;
Matthews, S. L.; Perutz, R. N.; Torres, O.; Vuong, K. Q. J. Am. Chem.
Soc. 2011, 133, 2303−2310.
transformed to and refined in P1. The refinement utilized w−1
=
̅
σ2(Fo ) + (0.1151p)2 + 251.4963p, where p = (Fo + 2Fc2)/3. The
tungsten atoms were refined anisotropically, but the data quality
mandated an isotropic refinement for the remaining heavy atoms.
Hydrogens were included at calculated positions. Constraints were
2
2
t
applied to the Bu3Si fragments such that chemically equivalent inter-
and intraatomic distances utilized the same least-squares variables (i.e.,
all d(SiCq) values are equivalent; all d(CqC) values are equivalent,
etc.). A diffusely formed and positionally disordered small molecule
was located in an area remote from either compound near the center
of symmetry; it was treated and refined as four carbon atoms per
asymmetric unit.
(7) Churchill, D. G.; Janak, K. E.; Wittenberg, J. S.; Parkin, G. J. Am.
Chem. Soc. 2003, 125, 1403−1420.
(8) Gould, G. L.; Heinekey, D. M. J. Am. Chem. Soc. 1989, 111,
5502−5504.
(9) Gross, C. L.; Girolami, G. S. J. Am. Chem. Soc. 1998, 120, 6605−
6606.
3. (tBu3SiN)2(tBu3SiNH)W(CHCCH2) (1-CHCCH2). A colorless
block (0.2 × 0.15 × 0.1 mm) of 1-CHCCH2, obtained by slow
evaporation of a hexane solution, was immersed in polyisobutylene,
extracted with a glass fiber, and placed under a 173 K nitrogen stream
on the goniometer head of a Siemens SMART CCD area detector
system equipped with a fine-focus Mo X-ray tube (λ = 0.710 73 Å).
Preliminary diffraction data revealed a monoclinic crystal system, and a
hemisphere routine was used for data collection. The data were
processed via the Bruker SAINT program to afford 27 007 reflections,
10 355 of which were symmetry independent (Rint = 0.0663) and 5347
were greater than 2σ(I). The data were corrected for absorption with
SADABS, and the structure was solved by direct methods (SHELXS),
completed by difference Fourier syntheses, and refined by full-matrix
(10) Bernskoetter, W. H.; Hanson, S. K.; Buzak, S. K.; Davis, Z.;
White, P. S.; Swartz, R.; Goldberg, K. I.; Brookhart, M. J. Am. Chem.
Soc. 2009, 131, 8603−8613.
(11) Jones, W. D. Acc. Chem. Res. 2003, 36, 140−146.
(12) Evans, D. R.; Drovetskaya, T.; Bau, R.; Reed, C. A.; Boyd, P. D.
W. J. Am. Chem. Soc. 1997, 119, 3633−3634.
(13) Castro-Rodriguez, I.; Nakai, H.; Gantzel, P.; Zaknarov, L. N.;
Rheingold, A. L.; Meyer, K. J. Am. Chem. Soc. 2003, 125, 15734−
15735.
(14) Wolczanski, P. T. Chem. Commun. 2009, 740−757.
(15) Cundari, T. R.; Klinckman, T. R.; Wolczanski, P. T. J. Am. Chem.
Soc. 2002, 124, 1481−1487.
(16) (a) Cundari, T. R. J. Am. Chem. Soc. 1992, 114, 10557−10563.
(b) Cundari, T. R. Organometallics 1993, 12, 4971−4978. (c) Cundari,
T. R. Organometallics 1994, 13, 2987−2994.
least-squares procedures (SHELXL).51 The refinement utilized w−1
=
σ2(Fo ) + (0.0149p)2 + 3.287p, where p = (Fo + 2Fc2)/3. All non-
hydrogen atoms were refined anisotropically, and hydrogen atoms
were included at calculated positions.
2
2
(17) (a) Benson, M. T.; Cundari, T. R.; Moody, E. W. J. Organomet.
Chem. 1995, 504, 1−13. (b) Cundari, T. R.; Klinckman, T. R. Inorg.
Chem. 1998, 37, 5399−5401. (c) Cundari, T. R.; Matsunaga, N.;
Moody, E. W. J. Phys. Chem. 1996, 100, 6475−6483.
(18) Cundari, T. R.; Pierpont, A. W.; Rabaa, H. Int. J. Quantum Chem.
2006, 106, 1611−1619.
ASSOCIATED CONTENT
■
S
* Supporting Information
CIF files giving crystal data for 1-CH3, 1-cPrMe, and 1-CH
CCH2. This material is available free of charge via the
(19) Bennett, J. L.; Wolczanski, P. T. J. Am. Chem. Soc. 1994, 116,
2179−2180.
(20) (a) Bennett, J. L.; Wolczanski, P. T. J. Am. Chem. Soc. 1997, 119,
10696−10719. (b) Bennett, J. L.; Vaid, T. P.; Wolczanski, P. T. Inorg.
Chim. Acta 1998, 270, 414−423.
AUTHOR INFORMATION
Corresponding Author
■
(21) Slaughter, L. M.; Wolczanski, P. T.; Klinckman, T. R.; Cundari,
T. R. J. Am. Chem. Soc. 2000, 122, 7953−7975.
(22) Cummins, C. C.; Schaller, C. P.; Van Duyne, G. D.; Wolczanski,
P. T.; Chan, E. A.-W.; Hoffmann, R. J. Am. Chem. Soc. 1991, 113,
2985−2994.
(23) (a) Schaller, C. P.; Cummins, C. C.; Wolczanski, P. T. J. Am.
Chem. Soc. 1996, 118, 591−611. (b) Cummins, C. C.; Baxter, S. M.;
Wolczanski, P. T. J. Am. Chem. Soc. 1988, 110, 8731−8733.
(24) Schaller, C. P.; Bonanno, J. B.; Wolczanski, P. T. J. Am. Chem.
Soc. 1994, 116, 4133−4134.
(25) de With, J.; Horton, A. D. Angew. Chem., Int. Ed. Engl. 1993, 32,
903−905.
ACKNOWLEDGMENTS
P.T.W. thanks the NSF (Nos. CHE-9528914 and CHE-
1055505) and Cornell University for financial support.
■
REFERENCES
■
(1) Bernskoetter, W. H.; Schauer, C. K.; Goldberg, K. I.; Brookhart,
M. Science 2009, 326, 553−556.
(2) (a) Geftakis, S.; Ball, G. E. J. Am. Chem. Soc. 1998, 120, 9953−
9954. (b) Geftakis, S.; Ball, G. E. J. Am. Chem. Soc. 1999, 121, 6336−
6537
dx.doi.org/10.1021/om2009342 | Organometallics 2011, 30, 6518−6538