Y. Chen et al. / Tetrahedron Letters 42 (2001) 7185–7187
7187
Table 1. Reaction conditions and results of the Pd-catalyzed allylic alkylation using (−)-1a
Entry
Pd (mol%)
(R)-1 (mol%)
Nuc. (equiv.)
BSAb (equiv.)
Solvent (mL)
Conversion (%)
Time (h)
ee %c
1
2
3
4
5
5
5
5
5
5
40
40
20
20
20
5
3
3
3
3
10
6
6
6
4
THF (0.2)
36
99
71
23
14
64
48
47
24
24
9
32
42
52
55
CH2Cl2 (0.2)
CH2Cl2 (0.2)
CH2Cl2 (0.2)
CH2Cl2 (0.2)
a Reactions were all carried out using 200 mL of acetate 10 at rt.
b N,O-Bis(trimethylsilyl)acetamide.
c ee was measured by chiral HPLC (ChiralPak AD).
8. Dai, X.; Wong, A.; Virgil, S. C. J. Org. Chem. 1998, 63,
2597–2600.
9. Characterization data for ( )-1: 1H NMR (300 MHz,
CDCl3) l 7.42–7.10 (m, 20H), 7.05 (s, 1H), 6.71 (s 1H),
3.68 (d, 1H, J=18.0 Hz), 3.36 (d, 1H, 18.0 Hz), 2.18 (s,
3H), 1.80 (s, 3H). IR (KBr) 3478, 2924, 1716, 1368, 749,
698 cm−1; found (HRMS, FAB) m/z 539.2014; calcd for
C36H30NO2P: 539.2030; mp 138–143°C, [h]2D5=−81.5 (c
2.38, CH2Cl2).
Scheme 2.
(−)-enantiomer was likewise crystallized and assigned as
the (R)-enantiomer with a Flack parameter of 0.08(9).
10. Miller, C. A.; Long, L. M. J. Am. Chem. Soc. 1951, 73,
4895–4898.
11. Cooper, M. K.; Downes, J. M.; Duckworth, P. A. Inorg.
Synth. 1989, 25, 129.
12. Purchased from Aldrich.
13. Yasuike, S.; Okajima, S.; Yamaguchi, K.; Seki, H.;
Kurita, J. Tetrahedron: Asymmetry 2000, 11, 4043–4047.
14. Calculated from the Eyring equation assuming an ideal
value of A=2.08×1010.
The ability of monophosphine 1 to effect asymmetric
transformations was tested in the well studied Pd-cata-
lyzed allylic alkylation reaction (Scheme 2).18
Monophosphine 1 is able to induce moderate enan-
tioselectivity with a high of 55% ee (Table 1, entry 5).
Higher reactivity and selectivity was observed in
CH2Cl2 as opposed to THF. In addition, it was found
that the reaction appeared to give higher selectivities at
lower conversions. While overall the selectivity is mod-
erate using monophosphine in comparison to bidentate
phosphine ligands, it is on par with that observed other
chiral monodentate phosphine ligands.3,19 We are cur-
rently in the process of surveying the selectivity of
monophosphine 1 in other asymmetric reactions in
which monodentate phosphine ligands have out per-
formed their bidentate cousins.3,20,21
15. Crystal data for phosphine (+)-1: C36H30NO2P, space
group P21, a=12.8739(7), b=12.8245(7), c=17.8403(10)
3
,
,
A, i=94.5560(10)°, volume=2936.1(3) A , Z=4. A yel-
low plate crystal of approximate dimensions 0.45 mm×
0.36 mm×0.11 mm was used for X-ray crystallographic
analysis. The X-ray intensity data were measured at 293
K using a Bruker SMART APEX CCD-based diffrac-
tometer system equipped with a Mo target X-ray tube
,
(u=0.71073 A). The structure was solved and refined
using the Bruker SHELXTL (Version 5.1) software pack-
age. The final anisotropic full-matrix least-squares refine-
ment converged at R1=0.0438, wR2=0.0644 (I>2|I),
using 11588 independent reflections. Hydrogen atoms
were refined using a riding model. Refinement of the
absolute structure parameter (Flack parameter) indicated
the compound to be enantiomerically pure.
References
1. Yamanoi, Y.; Imamoto, T. Rev. Heteroatom Chem. 1999,
20, 227–248.
2. Buono, G.; Chiodi, O.; Wills, M. Synlett 1999, 377–388.
3. Hayashi, T. Acc. Chem. Res. 2000, 33, 354–362.
4. Pu, L. H. Chem. Rev. 1998, 98, 2405–2494.
5. (a) Stanforth, S. Tetrahedron 1998, 54, 263–303; (b)
Bringmann, G.; Walter, R.; Weirich, R. Angew. Chem.,
Int. Ed. Engl. 1990, 29, 977–991.
6. (a) Curran, D. P.; Geib, S. N. D. Tetrahedron 1999, 55,
5681–5704; (b) Verma, S. M.; Singh, N. D. Aust. J.
Chem. 1976, 29, 295–300; (c) Osamu, K.; Izawa, H.; Sato,
K.; Dobashi, A.; Taguchi, T. J. Org. Chem. 1998, 63,
2634–2640.
16. Flack, H. D.; Bernardinelli, G. J. Appl. Crystallogr. 2000,
33, 1143–1148.
17. Eliel, E. L.; Wilen, S. H. Stereochemistry of Organic
Compounds; John Wiley & Sons: New York, 1994.
18. Trost, B. M.; VanVranken, D. L. Chem. Rev. 1996, 96,
395–422.
19. (a) Dai, X.; Virgil, S. Tetrahedron Lett. 1999, 40, 1245–
1248; (b) Clayden, J.; Johnson, P.; Pink, J. H.; Helliwell,
M. J. Org. Chem. 2000, 65, 7033–7040; (c) Clayden, J.;
Lai, L. W.; Helliwell, M. Tetrahedron: Asymmetry 2001,
12, 695–698.
7. (a) Degenhardt, III, C.; Shortell, D. B.; Adams, R. D.;
Shimizu, K. D. J. Chem. Soc., Chem. Commun. 2000,
929–930; (b) Shimizu, K. D.; Freyer, H. O.; Adams, R.
D. Tetrahedron Lett. 2000, 41, 5431–5434.
20. Nandi, M.; Jin, J.; RajanBabu, T. V. J. Am. Chem. Soc.
1999, 121, 9899–9900.
21. Hayashi, T. J. Organomet. Chem. 1999, 576, 195–202.