Selective GABAA R5 Receptor Inverse Agonist
J ournal of Medicinal Chemistry, 2003, Vol. 46, No. 11 2239
(16) Low, K.; Crestani, F.; Keist, R.; Benke, D.; Brunig, I.; Benson,
J . A.; Fritschy, J .-M.; Rulicke, T.; Bluethmann, H.; Mohler, H.;
Rudolph, U. Molecular and neuronal substrate for the selective
attenuation of anxiety. Science 2000, 290, 131-134.
(17) McKernan, R. M.; Rosahl, T. W.; Reynolds, D. S.; Sur, C.;
Wafford, K. A.; Atack, J . R.; Farrar, S.; Myers, J .; Cook, G.;
Ferris, P.; Garrett, L.; Bristow, L.; Marshall, G.; Macaulay, A.;
Brown, N.; Howell, O.; Moore, K. W.; Carling, R. W.; Street, L.
J .; Castro, J . L.; Ragan, C. I.; Dawson, G. R.; Whiting, P. J .
Sedative but not anxiolytic properties of benzodiazepines are
mediated by the GABAA receptor R1 subtype. Nat. Neurosci.
2000, 3, 587-592.
menter and ended when the rat climbed onto the platform and
the mean escape latency was recorded. The maximum trial
length was 60 s. If by that time the rat had not climbed on to
the platform, the trial ended automatically; the experimenter
intervened and placed the rat on the platform, and an escape
latency of 60 s was recorded. The rat remained on the platform
for 30 s (inter-trial interval, ITI). At the end of the ITI, the
rat was placed into the pool again, but at a different location,
and upon release the next trial began. This procedure was
repeated until four trials had been completed. Before com-
pound treatment commenced, animals were assigned to treat-
ment groups in such a way so as to ensure that the level of
performance (using mean savings) during the training phase
was not significantly different. Rats were dosed ip with either
vehicle (70%/30% PEG 300/water) or 43 (0.3 mg/kg), 30 min
before commencing the trials. The compound treatment phase
lasted for 5 days. It was identical to the methodology described
above with the exception that a 4 h delay period was inserted
between trial 1 and trial 2. Statistically significant differences
were determined using two-way ANOVA.
(18) Sur, C.; Quirk, K.; Dewar, D.; Atack, J . R.; McKernan, R. Rat
and human hippocampal R5 subunit-containing γ-aminobutyric
acidA receptors have R5â3γ2 pharmacological characteristics.
Mol. Pharmacol. 1998, 54, 928-933.
(19) Sieghart, W. Structure and pharmacology of γ-aminobutyric
acidA receptor subtypes. Pharmacol. Rev. 1995, 47, 181-234.
(20) (a) Huang, Q.; He, X.; Ma, C.; Liu, R.; Yu, S.; Dayer, C. A.;
Wenger, G. R.; McKernan, R.; Cook, J . M. Pharmacophore/
receptor models for GABAA/BzR subtypes (R1â3γ2, R5â3γ2 and
R6â3γ2) via a comprehensive ligand-mapping approach. J . Med.
Chem. 2000, 43, 71-95. (b) Masciadri, R.; Thomas, A. W.;
Wichmann, J . Preparation of 9H-imidazo[1,5-a][1,2,4]triazolo-
[4,3-d][1,4]benzodiazepines as alpha 5 subunit selective GABA
A receptor inverse agonists. In PCT Int. Appl.; (F. Hoffmann-
La Roche AG, Switz.). WO 02/040487. (c) Masciadri, R.; Thomas,
A. W.; Wichmann, J . Imidazo[1,5-a]pyrimido[5,4-d] benzodiaz-
epine derivatives as GABA A receptor modulators. In PCT Int.
Appl.; (F. Hoffmann-La Roche AG, Switz.). WO 02/094834.
(21) Quirk, K.; Blurton, P.; Fletcher, S.; Leeson, P.; Tang, F.; Mellilo,
D.; Ragan, C. I.; McKernan, R. M. [3H]L-655, 708, a novel ligand
selective for the benzodiazepine site of GABAA receptors which
contain the R5 subunit. Neuropharmacology 1996, 35, 1331-
1335.
Ack n ow led gm en t . The authors thank Steve
Thomas for obtaining the high resolution mass spectra.
Su p p or tin g In for m a tion Ava ila ble: Data showing the
mean swim speeds of rats dosed with 43 (0.3 mg/kg ip) and
vehicle (70% PEG 300) in the delayed ‘matching-to-place’ water
maze test. This material is available free of charge via the
Internet at http://pubs.acs.org.
(22) Yu, S.; Ma, C.; He, X.; McKernan, R.; Cook, J . M. Studies in the
search for R5 subtype selective agonists for GABAA/BzR sites.
Med. Chem. Res. 1999, 9, 71-88.
Refer en ces
(1) Bormann, J . The ‘ABC’ of GABA receptors. Trends Pharmacol.
Sci. 2000, 21, 16-19.
(23) Chambers, M. S.; Atack, J . R.; Bromidge, F. A.; Broughton, H.
B.; Cook, S.; Dawson, G. R.; Hobbs, S. C.; Maubach, K. A.; Reeve,
A. J .; Seabrook, G. R.; Wafford, K.; MacLeod, A. M. 6,7-Dihydro-
2-benzothiophen-4(5H)-ones: A novel class of GABA-A R5 recep-
tor inverse agonists. J . Med. Chem. 2002, 45, 1176-1179.
(24) Kearsley, S. K.; Sallamack, S.; Fluder, E. M.; Andose, J . D.;
Mosley, R. T.; Sheridan, R. P. Chemical similarity using phys-
iochemical property descriptors. J . Chem. Inf. Comput. Sci. 1996,
36, 118-127.
(25) Patent EP 0601184. Inventor, Yoshitomi Pharmaceutical Ind.
Ltd.
(26) Available from Maybridge Chemical Co. Ltd., Trevillett, Corn-
wall, U.K.
(27) Casula, M. A.; Bromidge, F. A.; Pillai, G. V.; Wingrove, P. B.;
Martin, K.; Maubach, K.; Seabrook, G. R.; Whiting, P. J .;
Hadingham, K. L. Identification of amino acid residues respon-
sible for the R5 subunit binding selectivity of L-655, 708, a
benzodiazepine binding site ligand at the GABAA receptor. J .
Neurochem. 2001, 77, 445-451.
(28) Hadingham, K. L.; Garrett, E. M.; Wafford, K. A.; Bain, C.;
Heavens, R. P.; Sirinathsinghji, D. J . S.; Whiting, P. J . Cloning
of cDNAs encoding the human γ-aminobutyric acid type A
receptor R6 subunit and characterization of the pharmacology
of R6-containing receptors. Mol. Pharmacol. 1996, 49, 253-259.
(29) Wafford, K. A.; Whiting, P. J .; Kemp, J . A. Differences in affinity
and efficacy of benzodiazepine receptor ligands at recombinant
γ-aminobutyric acidA receptor subtypes. Mol. Pharmacol. 1993,
43, 240-244.
(2) Whiting, P. J .; Wafford, K. A.; McKernan, R. M. Pharmacologic
subtypes of GABAA receptors based on subunit composition. In
GABA in the nervous system: The view at fifty years; Martin, D.
L.; Olsen, R. W., Eds.; Lippincott, Williams & Wilkins: New
York, 2001; pp 113-126.
(3) McKernan, R. M.; Whiting, P. J . Which GABAA-receptor sub-
types really occur in the brain? Trends Neurosci. 1996, 19, 139-
143.
(4) Barnard, E. A.; Skolnick, P.; Olsen, R. W.; Mohler, H.; Sieghart,
W.; Biggio, G.; Braestrup, C.; Bateson, A. N.; Langer, S. Z.
Subtypes of γ-aminobutyric acidA receptors: Classification on
the basis of subunit structure and receptor function. Pharmacol.
Rev. 1998, 50, 291-313.
(5) Olsen, R. W.; Venter, J . C. Benzodiazepine/ GABA receptors and
chloride channels: Structural and functional properties; New
York: Alan R. Liss Inc., 1986.
(6) Cole, S. O. Effects of benzodiazepines on acquisition and
performance: A critical assessment. Neurosci. Biobehav. Rev.
1986, 10, 265-272.
(7) Ghoneim, M. M.; Mewaldt, S. P. Benzodiazepines and human
memory: A review Anaesthesiology 1990, 72, 926-938.
(8) Hagen, T. J .; Guzman, F.; Schultz, C.; Cook, J . M.; Skolnick, P.;
Shannon, H. E. Synthesis of 3,6-disubstituted â-carbolines which
possess either benzodiazepine antagonist or agonist activity.
Heterocycles 1986, 24, 2845-2855.
(9) Liu, R.; Zhang, P.; McKernan, R. M.; Wafford, K.; Cook, J . M.
Synthesis of novel imidazobenzodiazepines selective for the
R5â2γ2 (Bz5) GABAA/benzodiazepine receptor subtype. Med.
Chem. Res. 1995, 5, 700-709.
(10) McNamara, R. K.; Skelton, R. W. Benzodiazepine receptor
antagonists flumazenil and CGS 8216 and inverse agonist
â-CCM enhance spatial learning in the rat: Dissociation from
anxiogenic actions. Psychobiology 1993, 21 (2), 101-108.
(11) Dorow, R.; Horowski, R.; Paschelke, G.; Amin, M.; Braestrup,
C. Severe anxiety induced by FG 7142, a â-carboline ligand for
benzodiazepine receptors. Lancet 1983, 2, 98-99.
(12) Petersen, E. N. DMCM: A potent convulsive benzodiazepine
receptor ligand. Eur. J . Pharmacol. 1983, 94, 117-124.
(13) Little, H. J .; Nutt, D. J .; Taylor, S. C. Acute and chronic effects
of the benzodiazepine receptor ligand FG 7142: proconvulsant
properties and kindling. Br. J . Pharmacol. 1984, 83, 951-958.
(14) Sarter, M.; Bruno, J . P.; Berntson, G. G. Psychotogenic properties
of benzodiazepine receptor inverse agonists. Psychopharmacol-
ogy 2001, 156, 1-13.
(15) Rudolph, U.; Crestani, F.; Benke, D.; Brunig, I.; Benson, J . A.;
Fritschy, J .-M.; Martin, J . R.; Bluethmann, H.; Mohler, H.
Benzodiazepine actions mediated by specific γ-aminobutyric
acidA receptor subtypes. Nature 1999, 401, 796-800.
(30) Hadingham, K. L.; Wafford, K. A.; Thompson, S. A.; Palmer, K.
J .; Whiting, P. J . Expression and pharmacology of human
GABAA receptors containing γ3 subunits. Eur. J . Pharmacol.
1995, 291, 301-309.
(31) Horne, A. L.; Hadingham, K. L.; Macaulay, A. J .; Whiting, P.;
Kemp, J . A. The pharmacology of recombinant GABAA receptors
containing bovine R1, â1, γ2L subunits stably transfected into
mouse fibroblast L-cells. Br. J . Pharmacol. 1992, 107, 732-737.
(32) Radioligand binding and enzyme assays performed by MDS
Pharma Services, PO Box 26-127, Taipei, Taiwan, R.O.C.
(33) Atack, J . R.; Smith, A. J .; Emms, F.; McKernan, R. M. Regional
differences in the inhibition of mouse in vivo [3H]Ro 15-1788
binding reflect selectivity for R1 versus R2 and R3 subunit-
containing GABAA receptors. Neuropsychopharmacology 1999,
20, 255-262.
(34) Roberts, A. J .; Keith, L. D. Mineralocorticoid receptors mediate
the enhancing effects of corticosterone on convulsion susceptibil-
ity in mice. J . Pharm. Exp. Ther. 1994, 270, 505-511.
(35) Morris, R. Developments of a water-maze procedure for studying
spatial learning in the rat. J . Neurosci. Methods 1984, 11, 47-
60.