Synthesis of Dinulceoside Phosphorothioates
J . Org. Chem., Vol. 63, No. 11, 1998 3653
1H, CHN), 3.38 (AB, 2H, 2 × H-5′), 3.46-3.39 (ddd, J H5e′′-H4′′
) 2.7 Hz, J H5e′′-H5a′′ ) 14.3 Hz, J H5e′′-P ) 20 Hz, 1H, H-5e′′),
3.35-3.30 (dt, J H5a′′-H5e′′ ) 14.3 Hz, J H5a′′-H4′′ ) J H5a′′-P ) 3.2
Hz, 1H, H-5a′′), 2.41 (m, 1H, H-2a′), 2.09 (m, 1H, H-2b′), 1.89
(d, J ) 1.5 Hz, 3H, CH3CdC), 1.96-1.62 (m, 8H, cyclopentyl-
idene protons), 1.11 (d, J ) 6.8 Hz, 3H, CH3CHN), 1.05 (d, J
) 6.8 Hz, 3H, CH3CHN), 0.90 (s, 9H, t-BuSi), 0.11 (s, 6H, Me2-
Si); 13C NMR (CDCl3) δ 163.81 (C-4), 150.53 (C-2), 134.92 (C-
6), 121.91 (OCO), 111.23 (C-5), 104.68 (C-1′′), 85.91 (d, J )
1.8 Hz, C-4′), 84.80 (C-1′), 84.00 (d, J ) 11.0 Hz, C-2′′), 80.95
(d, J ) 9.2 Hz, C-3′′), 78.25 (d, J ) 5.5 Hz, C-3′), 72.60 (d, J )
4.6 Hz, C-4′′), 63.55 (C-5′), 47.90 (d, J ) 6.4 Hz, CHN), 39.40
(d, J ) 7.3 Hz, C-5′′), 39.25 (C-2′), 36.85, 36.20 (CH2CCH2),
25.86 (SiCMe3), 23.35, 22.78 (CH2CH2CCH2CH2), 20.60 (d, J
) 6.4 Hz, NCHMe), 20.20 (d, J ) 2.7 Hz, NCHMe), 18.25
(SiCMe3), 12.44 (CdCCH3), -5.47, -5.50 (SiMe2); 31P NMR
(CDCl3) δ 67.54; HRMS (FAB, glycerol) m/e calcd for C29H49N3O9-
PSSi [MH+] 674.2693, found 674.2696.
4.09 (1H, m, H-4′), 3.91-3.79 (2H, ABX, 2 × H-5′), 3.49-3.47
(1H, m, H-5a′′), 3.47-3.43 (1H, septet, NCH), 3.08-3.03 (1H,
m, H-5e′′), 2.41-2.37 (1H, m, H-2′), 2.13-2.07 (1H, m, H-2′),
1.92 (3H, d, J ) 1.0 Hz, MeCdC), 1.49 (3H, s, CH3CCH3), 1.31
(3H, s, CH3CCH3), 1.14-1.11 (6H, m, Me2CH), 0.93 (9H, s,
t-BuSi), 0.12 (6H, d, J ) 1.5 Hz, Me2Si); 13C NMR (CDCl3) δ
164.38 (C-4), 150.50 (C-2), 135.24 (C-6), 111.61 (OCO), 110.94
(C-5), 104.78 (C-1′′), 86.34 (C-4′), 84.73 (C-1′), 84.82 (C-2′′),
73.64 (d, J ) 18.1 Hz, C-3′), 72.32 (C-4′′), 71.77 (C-3′′), 63.11
(C-5′), 49.92 (d, J ) 36.6 Hz, NCH), 40.24 (C-2′), 36.01 (C-5′′),
26.62, 26.09 (Me2C), 25.94 (SiCCH3), 22.03, 21.80 (Me2CHN),
18.27 (SiCCH3), 12.46 (CH3CdC), -5.37, -5.44 (Me2Si); 31P
NMR (CDCl3) δ 129.0; MS (FAB, nitrobenzyl alcohol) m/e
[MH+] 616.
Oxa za p h osp h or in a n e (19a ). Using the procedure de-
scribed for 4S, 19a was obtained in quantitative yield: 1H
NMR (CDCl3) δ 9.02 (1H, bs, NH), 7.52 (1H, d, J H6-CH3CdC
1.0 Hz, H-6), 6.36-6.33 (1H, dd, J H1′-H2a′ ) 5.1 Hz, J H1′-H2b′
)
)
P h osp h or oth ioa m id a te (3S). To a solution of a mixture
of phosphoramidite 3 and 4 in a ratio of 2:3 (45 mg, 0.075
mmol) in dry chloroform (1.0 mL) was added Beaucage’s
reagent (1.2 equiv) at room temperature. The reaction mixture
was stirred for 5 min. After flash chromatography (ethyl
acetate:hexane ) 1:3), the slow eluent (25 mg) is 4S according
to 31P NMR (67.54 ppm), while the fast eluent (18 mg) is 3S
by 31P NMR (72.35 ppm): 1H NMR (CDCl3) δ 8.41 (br,, 1H,
9.0 Hz, H-1′), 5.96 (1H, d, J H1′′-H2′′ ) 3.7 Hz, H-1′′), 5.03 (1H,
dd, J ) 5.6 Hz, J ) 10.0 Hz, H-3′), 4.66 (1H, m, H-3′′), 4.51
(1H, d, J H1′′-H2′′ ) 3.9 Hz, H-2′′), 4.27-4.23 (3H, m, H-4′, H-4′′,
NCH), 3.92-3.86 (2H, m, 2 × H-5′′), 3.47-3.32 (2H, m, 2 ×
H-5′′), 2.43-2.39 (1H, m, H-2′), 2.12-2.06 (1H, m, H-2′), 1.89
(3H, s, MeCdC), 1.47 (3H, s, CH3CCH3), 1.29 (3H, s, CH3CCH3),
1.10 (3H, d, J ) 6.8 Hz, Me2CH), 1.05 (3H, d, J ) 6.8 Hz,
Me2CH), 0.90 (9H, s, t-BuSi), 0.11 (6H, s, Me2Si); 13C NMR
(CDCl3) δ 163.65 (C-4), 150.41 (C-2), 134.97 (C-6), 112.32
(OCO), 111.25 (C-5), 104.94 (C-1′′), 85.96 (d, J ) 2.8 Hz, C-4′),
84.85 (C-1′), 84.12 (d, J ) 11.0 Hz, C-2′′), 80.95 (d, J ) 9.2 Hz,
C-3′′), 78.29 (d, J ) 5.5 Hz, C-3′), 72.45 (d, J ) 4.6 Hz, C-4′′),
63.61 (C-5′), 48.00 (d, J ) 6.4 Hz, NCH), 39.46 (d, J ) 7.3 Hz,
C-5′′), 39.23 (C-2′), 26.64, 26.60 (Me2C), 25.90 (SiCCH3),
20.65(d, J ) 5.5 Hz, CH3CHN), 20.47 (d, J ) 2.8 Hz, CH3-
CHN), 18.30 (SiCCH3), 12.49 (CH3CdC), -5.42, -5.45 (Me2-
Si); 31P NMR (CDCl3) δ 67.50; HRMS (FAB, glycerol): m/e
calcd. for C27H47N3O9PSSi [MH+]: 648.25422, found 648.25399.
Oxa za p h osp h or in a n e (18b). By the same procedure as
described for 18a , 18b was obtained with yield of 60%. 1H
NMR (CDCl3) δ 5.93 (1H, d, J ) 3.7 Hz, H-1), 4.51 (1H, d, J )
3.7 Hz, H-2), 4.41 (1H, m, H-3), 4.17-4.13 (2H, m, H-4, OCH),
3.49-3.46 (1H, m, H-5), 3.40 (1H, septet, NCH),), 3.01-2.99
(1H, m, H-5), 1.47 (3H, s, CCH3), 1.30 (3H, s, CCH3), 1.23 (6H,
m, OCHMe2), 1.10 (6H, m, NCHMe2); 13C NMR (CDCl3) δ
111.48 (OCO), 104.91 (C-1), 84.94 (d, J ) 2.8 Hz, C-2), 73.48
(C-4), 71.15 (d, J ) 2.8 Hz, C-3), 67.14 (d, J ) 18.3, OCH),
49.74 (d, J ) 35.7 Hz, NCH), 36.24 (d, J ) 3.7 Hz, C-5), 26.68,
26.19 (Me2C), 24.56 (d, J ) 4.6 Hz, OCHCH3), 24.33 (d, J )
2.7 Hz, OCHCH3), 21.91 (d, J ) 10.1 Hz, NCHCH3), 21.39 (d,
J ) 6.4 Hz, NCHCH3); 31P NMR (CDCl3) δ 128.18.
NH), 7.52 (d, 1H, J ) 1.2 Hz, H-6), 6.36-6.33 (dd, J H1′-H2′a
)
5.3 Hz, J H1′-H2′b ) 9.3 Hz, 1H, H-1′), 6.00 (d, 1H, J H1′′-H2′′ ) 4
Hz, H-1′′), 5.20-5.17 (ddd, 1H, J H3′-H2′ ) 5.6 Hz, J H3′-4′ ) 1
Hz, J H3′-P ) 10 Hz, H-3′), 4.65-4.63 (dd, 1H, J H3′′-H4′′) 4.1
Hz, J H3′′-H2′′ ) 5.3 Hz, H-3′′), 4.63 (d, 1H, J H2′′-H1′′ ) 4 Hz, H-2′′),
4.56-4.52 (ddd, 1H, J H4′′-H3′′ ) 4.1 Hz, J H4′′-H5a′′ ) J H4′′-H5b′′
)
6.6 Hz, H-4′′), 4.16 (q, 1H, J H4′-H3′ ) J H4′-H5a′ ) J H4′-H5b′ ) 1
Hz, H-4′), 3.95 (septet, 1H, CHN), 3.88 (d, 2H, 2 × H-5′), 3.45-
3.37 (ddd, 1H, J H5a′′-H4′′ ) 6.4 Hz, J H5a′′-H5b′′ ) 14, J H5a′′-P ) 19
Hz, H-5a′′), 3.13-3.07 (ddd, 1H, J H5b′′-H4′′ ) 6.5 Hz, J H5b′′-H5a′′
) 14 Hz, J 5b′′-P ) 12 Hz, H-5b′′), 2.49-2.46 (dd, 1H, J H2a′-H2b′
) 14 Hz, J H2a′-H3′ ) 5.4 Hz, H-2a′), 2.10-2.04 (ddd, 1H,
J H2b′-H2a′ ) 15 Hz, J H2b′-H1′ ) 9 Hz, J H2b′-H3′ ) 5.3 Hz, H-2b′),
1.89 (d, 3H, J ) 1 Hz, CH3CdC), 1.96-1.62 (m, 8H, cyclopen-
tylidene protons), 1.11 (d, 3H J ) 6.8 Hz, CH3CHN), 1.07 (d,
3H, J ) 6.8 Hz, CH3CHN), 0.91 (s, 9H, t-BuSi), 0.12 (s, 6H,
Me2Si); 13C NMR (CDCl3) δ 163.43 (C-4), 150.13 (C-2), 135.07
(C-6), 121.87 (OCO), 111.15 (C-5), 105.65 (C-1′′), 86.25 (d, J )
6.4 Hz, C-4′), 84.72 (C-1′), 83.97 (d, J ) 12 Hz, C-2′′), 80.83 (d,
J ) 6.3 Hz, C-3′′), 79.13 (d, J ) 4.6 Hz, C-3′), 77.80 (d, J ) 1.8
Hz, C-4′′), 63.46 (C-5′), 46.90 (d, J ) 6.4 Hz, CNH), 40.74 (C-
2′), 39.36 (d, J ) 5.5 Hz, C-5′′), 37.04, 36.62 (CH2CCH2), 25.93
(SiCMe3), 23.37, 23.11 (CH2CH2CCH2CH2), 20.97 (d, J ) 2.7
Hz, NCHMe), 20.57 (d, J ) 4.6 Hz, NCHMe), 18.34 (SiCMe3),
12.49 (CdCCH3), -5.39 (SiMe2); HRMS (FAB, glycerol) m/e
calcd for C29H49N3O9PSSi [MH+] 674.2693, found 674.2696.
Syn th esis of 18a -d a n d 19a -d . 1,2-O-Isop r op ylid en e-
5-d eoxy-5-isop r op yla m in o-r-D-xylofu r a n ose. Using the
procedure described for 1, 1,2-O-isopropylidene-5-deoxy-5-
isopropylamino-R-D-xylofuranose was obtained in 80% yield
from 1,2-O-isopropylidene-5-tosyl-R-L-xylofuranose: 1H NMR
(CDCl3) δ 8.0 (bs, NH), 5.91 (1H, d, J ) 3.9 Hz, H-1), 4.44
(1H, d, J ) 3.9 Hz, H-2), 4.25-4.18 (2H, m, H-3, H-4), 3.39-
2.90 (2H, ABX, 2 × H-5), 2.79-2.66 (1H, septet, NCH), 1.44
(3H, s, CCH3), 1.03 (6H, d, J ) 6.4 Hz, Me2CH); 13C NMR
(CDCl3) δ 111.43 (OCO), 105.12 (C-1), 86.14 (C-2), 78.23 (C-
3), 76.91 (C-4), 48.84 (NCH), 45.90 (C-5), 26.81, 26.17
(CH3CCH3), 22.64 (CH3CHN), 22.34 (CH3CHN); MS (CI) m/e
232 ([M + H+], 100%).
P h osp h or oth ioa m id a te (19b). By the same procedure as
described for 4S, 19b was obtained in quantitative yield. 1H
NMR (CDCl3) δ 5.97 (1H, d, J ) 3.7 Hz, H-1), 4.71-4.66 (1H,
m, OCH), 4.65 (1H, d, J ) 3.7 Hz, H-2),4.60 (1H, m, H-3), 4.28
(1H, septet, NCH), 4.24 (1H, m, H-4), 3.42-3.32 (2H, m, 2 ×
H-5), 1.47 (3H, s, CCH3), 1.31 (3H, d, J ) 6.4 Hz, OCHCH3),
1.30(3H, s, CCH3), 1.27 (3H, d, J ) 6.1 Hz, OCHCH3), 1.10
(3H, d, J ) 6.6 Hz, NCHCH3), 1.04 (3H, d, J ) 6.4 Hz,
NCHCH3) 13C NMR (CDCl3) δ 112.08 (OCO), 105.04 (C-1),
84.20 (d, J ) 11.0 Hz, C-2), 80.33 (d, J ) 9.1 Hz, C-3), 71.94
(d, J ) 4.6 Hz, C-4), 71.87 (d, J ) 6.4 Hz, OCH), 47.60 (d, J )
6.4 Hz, NCH), 39.20 (C-5), 26.68, 26.20 (Me2C), 23.59 (d, J )
6.4 Hz, OCHCH3), 23.40 (d, J ) 3.7 Hz, OCHCH3), 20.69 (d,
J ) 7.3 Hz, NCHCH3), 20.10 (d, J ) 1.8 Hz, NCHCH3); 31P
NMR (CDCl3) δ 67.08; HRMS (FAB, glycerol): m/e calcd. for
C
14H27NO5PS [MH+]: 352.13485, found 352.13476.
Cyclic p h osp h or och lor id ite was obtained by the proce-
dure described for 2. The product was not isolated and it was
directly used in the following step: 31P NMR (CDCl3) δ 148.31.
Oxa za p h osp h or in a n e (18a ). Using the procedure de-
scribed for 4, 18a was obtained from the above cyclic phos-
phorochloridite in 84% yield: 1H NMR (CDCl3) δ 8.19 (1H, bs,
NH), 7.50 (1H, d, J H6-CH3CdC ) 1.0 Hz, H-6), 6.35-6.33 (1H,
dd, J H1′-H2a′ ) 5.4 Hz, J H1′-H2b′ ) 8.3 Hz, H-1′), 5.94 (1H, d,
J H1′′-H2′′ ) 3.9 Hz, H-1′′), 4.60-4.57 (1H, m, H-3′), 4.51 (1H, d,
J H1′′-H2′′ ) 3.9 Hz, H-2′′), 4.36 (1H, m, H-3′′), 4.18 (1H, m, H-4′′),
Oxa za p h osp h or in a n e (18c). Using the procedure de-
scribed for 18a , 18c was obtained with a yield of 78%: 31P
NMR (CDCl3) δ 125.31.
P h osp h or oth ioa m id a te (19c). By the procedure de-
scribed for 19a , 19c was obtained in quantitative yield: 1H
NMR (CDCl3) δ 8.24-7.34 (4H, AA′BB′, aromatic protons), 6.02
(1H, d, J ) 3.4 Hz, H-1), 4.71 (2H, m, H-2, H-3), 4.41 (1H,
septet, NCH), 4.30 (1H, m, H-4), 3.60-3.43 (2H, m, 2 × H-5),
1.48 (3H, s, CCH3), 1.31 (3H, s, CCH3), 1.16 (3H, d, J ) 6.6
Hz, NCHCH3), 1.07 (3H, d, J ) 6.4 Hz, NCHCH3); 13C NMR