10.1002/chem.201801887
Chemistry - A European Journal
COMMUNICATION
O
SEt
PhZnCl•LiCl (3 eqv.)
a)
O
Ph
In conclusion, we have shown that an operationally
homogeneous precatalyst C2 is an efficient and functional group
tolerant catalyst for the Ni-catalyzed Fukuyama reaction. Both
homogeneous precatalysts such as C2 and Ni nanoparticles can
be entry points into catalysis. Thus, a picture similar to the Pd-
catalyzed FR emerges where hetero- and homotopic catalytic
cycles may coexist.[26] We provide the first experimental proof that
the Ni-catalyzed FR proceeds via acyl radical intermediates
(and/or synthons thereof), which were previously accessible from
thioesters only by neutral photo- and thermolysis as well as
reductive electrolysis and in a catalytic manner by photoredox
catalysis.[27] We wish to harness these catalytically generated
reactive intermediates in related Ni-catalyzed transformations to
gain further proof of this concept.
Ph
[Ni]
+
Ph
Ph
Ph
RT, 4 h
30
31
32
"Fukuyama"
48% conv.
17%
3%
5 mol% C2,
THF
"RAE"
100% conv.
b)
32%
20%
20 mol% NiCl2(H2O)6,
40 mol% di-tBu-bpy,
THF:DMF 3:2
(2 eqv.)
CO2Et
17-20%
conv.
1
PhZnCl•LiCl (1.86 eqv.),
O
Ph
CO2Et
NiCl2 or C2 (5 mol%)
2
n-Pent
THF, RT, 30 min
10%
33
[Ni]
GC/MS(EI)
O
O
n-Pent
c)
CO2Et
not quantified
Acknowledgements
n-Pent
CO2Et
[Ni]
We are thankful to M. Sindlinger and V. Geiger for technical
assistance. Financial support from Fonds der Chemischen
Industrie (Liebig fellowship IF), the DAAD (PhD fellowship PK)
and the University of Tübingen (Institutional Strategy of the
University of Tübingen: Deutsche Forschungsgemeinschaft ZUK
63) is gratefully acknowledged.
O
Ar-(oTol) (5 mol%)
0
R''
SR'
L2Ni(Ar)(oTol)
L2Ni
O
+ ArZnCl - ZnCl2
prim.
<
sec.
<
tert.
<
benzylic
C2
R''
34
I
R''COR
L2Ni(SR')
kDCO
Keywords: Nickel catalysis • Acyl radicals • Fukuyama coupling
L2Ni(R''CO)(R)
R''CO
or R''
• Thioester • Ketones
II
L2Ni(R''CO)(SR')
R'SZnX
[1]
a) H. Tokuyama, S. Yokoshima, T. Yamashita, T. Fukuyama,
Tetrahedron Lett. 1998, 39, 3189-3192; b) H. Tokuyama, S. Yokoshima,
T. Yamashita, L. Shao-Cheng, L. Leping, T. Fukuyama, J. Braz. Chem.
Soc. 1998, 9, 381-387.
RZnX
Scheme 3. a) Testing for decarbonylative pathways by generation of benzylic
acyl radicals from benzylic thioesters. b) Trapping acyl radicals by a hybrid
Fukuyama-Giese reaction. c) Proposed mechanism.
[2]
[3]
V. Hirschbeck, P. H. Gehrtz, I. Fleischer, Chem. Eur. J., early view DOI:
10.1002/chem.201705025.
a) J. N. deGruyter, L. R. Malins, L. Wimmer, K. J. Clay, J. Lopez-Ogalla,
T. Qin, J. Cornella, Z. Liu, G. Che, D. Bao, J. M. Stevens, J. X. Qiao, M.
P. Allen, M. A. Poss, P. S. Baran, Org. Lett. 2017, 19, 6196-6199; b) B.
Neises, W. Steglich, Angew. Chem. Int. Ed. 1978, 17, 522-524.
a) V. Hirschbeck, P. H. Gehrtz, I. Fleischer, J. Am. Chem. Soc. 2016,
138, 16794-16799; b) M. N. Burhardt, A. Ahlburg, T. Skrydstrup, J. Org.
Chem. 2014, 79, 11830-11840.
In our proposed mechanism, activation of C2 by ArZnCl leads
to a zerovalent Ni species (Scheme 3c),[14] which undergoes a
single electron transfer-type stepwise oxidative addition into the
thioester. A short-lived acyl radical 34, which can undergo capture
by radical acceptors or decomposition by decarbonylation, is
formed. The acyl or alkyl radical recombines with the Ni(I) species,
providing a Ni(II) oxidative addition complex (Scheme 3c). This is
followed by the classical steps of transmetalation and reductive
elimination to close the cycle. Thus, an apparent classical 2-
valence electron cross-coupling mechanism involves SET steps
as proven by capture or decarbonylation of acyl radical
intermediates. Other mechanisms such as a Ni(I/II/III) cycle may
be possible as well.[24] The difference in the propensity to
decarbonylate 30 (to give 32) between C2 and other Ni/diimine
ligand combinations can be accounted to a lower tendency of
Xantphos-ligated Ni acyl species to undergo migratory deinsertion
of CO (non-radical on-metal decarbonylation). Stoichiometric
experiments by the groups of Love and Riordan on the oxidative
addition of defined, bidentate-phosphine ligated Ni0 complexes
into thioesters have shown that decarbonylation of the resulting
acylnickel(II) thiolates occurs readily to give alkylnickel(II)
thiolates.[25]
[4]
[5]
a) M. Seki, M. Hatsuda, Y. Mori, S.-i. Yoshida, S.-i. Yamada, T. Shimizu,
Chem. Eur. J. 2004, 10, 6102-6110; b) H. Ueda, H. Satoh, K. Matsumoto,
K. Sugimoto, T. Fukuyama, H. Tokuyama, Angew. Chem. Int. Ed. 2009,
48, 7600-7603.
[6]
[7]
R. Oost, A. Misale, N. Maulide, Angew. Chem. Int. Ed. 2016, 55, 4587-
4590.
K. Kunchithapatham, C. C. Eichman, J. P. Stambuli, Chem. Commun.
2011, 47, 12679-12681.
[8]
[9]
S. S. Zalesskiy, V. P. Ananikov, Organometallics 2012, 31, 2302-2309.
Y. Mori, M. Seki, Adv. Synth. Catal. 2007, 349, 2027-2038.
[10] T. Shimizu, M. Seki, Tetrahedron Lett. 2002, 43, 1039-1042.
[11] Y. Zhang, T. Rovis, J. Am. Chem. Soc. 2004, 126, 15964-15965.
[12] A. Chatupheeraphat, H.-H. Liao, W. Srimontree, L. Guo, Y. Minenkov, A.
Poater, L. Cavallo, M. Rueping, J. Am. Chem. Soc. 2018.
[13] a) F. M. Piller, P. Appukkuttan, A. Gavryushin, M. Helm, P. Knochel,
Angew. Chem. Int. Ed. 2008, 47, 6802-6806; b) F. M. Piller, A. Metzger,
M. A. Schade, B. A. Haag, A. Gavryushin, P. Knochel, Chem. Eur. J.
2009, 15, 7192-7202.
[14] E. A. Standley, S. J. Smith, P. Müller, T. F. Jamison, Organometallics
2014, 33, 2012-2018.
This article is protected by copyright. All rights reserved.