278
D. M. Springer et al. / Bioorg. Med. Chem. 11 (2003) 265–279
Hz, ArH), 7.46 (s, 1H, ArH), 7.09 (d, 1H, J=16 Hz,
ArCH¼C), 7.01 (d, 1H, J=2Hz, ArH), 6.89 (dd, 1H,
J=2, 7 Hz, ArH), 6.30 (d, 1H, J=16 Hz, C¼CHCO2H),
5.40 (dd, J=5, 8 Hz, R1R2CHNR3), 4.92(d, 1H, J=5
Hz, CH(CNR)(SR)), 4.66 (d, 1H, J=13 Hz, SCH2),
4.45 (d, 1H, J=13 Hz, SCH2), 3.96–3.75 (m, 2H), 3.50
(d, 1H, J=17 Hz, SCH2), 3.36 (d, 1H, J=17 Hz, SCH2).
MS (ESI) m/e 748 (M+H)+. Anal. (C31H21Cl2N3Na2-
Brunswick, NJ for solubility determinations in support
of this work.
References and Notes
1. (a) Ayliffe, G. A. J. Clinical Infectious Diseases 1997, 24,
S74. (b) Ehlert, K. Curr. Pharm. Des. 1999, 5, 45.
2. Rotschafer, J. C.; Petersen, M.; Hoang, A. T. D.; Wright,
D. J. Infect. Dis. Pharm. 1998, 3, 2 9.
.
O9S3 4.7H2O) C, H, N.
3. (a) Hiramatsu, K.; Hanaki, H.; Ino, T.; Yabuta, K.; Oguri,
T.; Tenover, F. C. J. Antimicrob. Chemother. 1997, 40, 135. (b)
Smith, T. L.; Pearson, M. L.; Wilcox, K. R.; Cruz, C.; Lan-
caster, M. V.; Robinson-Dunn, B.; Tenover, F. C.; Zervos,
M. J.; Band, J. D.; White, E.; Jarvis, W. R. New Eng. J. Med.
1999, 340, 493.
Synthesis of cephem 60. A. Synthesis of N,N0-di(tert-
butoxycarbamyl)-N00-[2-(4-thioxo-4H-pyridin-1-yl)-ethyl]-
guanidine. Pyran-4-thione (0.110 g, 0.982mmol) and
N,N0-di(tert-butoxycarbamyl)-N00-[2-aminoethyl]-guanidine
(0.385 g, 1.28 mmol) are dissolved in 10 mL absolute
ethanol and allowed to stir 18 h at room temperature.
1H NMR analysis indicates the reaction is only ꢃ50%
complete. The mixture is heated to 80ꢂC for 4 h, at which
4. (a) For some recent publications concerning the develop-
ment of anti-MRSA cephems see: Hecker, S. J.; Glinka, T. W.;
Cho, A.; Zhang, Z. J.; Price, M. E.; Chamberland, S.; Griffith,
D.; Lee, V. J. J. Antibiot. 2000, 53, 1272. (b) Glinka, T. W.;
Cho, A.; Zhang, Z. J.; Ludwikow, M.; Griffith, D.; Huie, K.;
Hecker, S. J.; Dudley, M. N.; Lee, V. J.; Chamberland, S. J.
Antibiot. 2000, 53, 1045. (c) Ishikawa, T.; Iizawa, Y.; Okonogi,
K.; Miyake, A. J. Antibiot. 2000, 53, 1053. (d) Ishikawa, T.;
Kamiyama, K.; Matsunaga, N.; Tawada, H.; Iizawa, Y.;
Okonogi, K.; Miyake, A. J. Antibiot. 2000, 53, 1071. (e)
Tsushima, M.; Iwamatsu, K.; Umemura, E.; Kudo, T.; Sato,
Y.; Shiokawa, S.; Takizawa, H.; Kano, Y.; Kobayashi, K.;
Ida, T.; Tamura, A.; Atsumi, K. Bioorg. Med. Chem. 2000, 8,
2781. (f) Pae, A. N.; Lee, J. E.; Kim, B. H.; Cha, J. H.; Kim,
H. Y.; Cho, Y. S.; Choi, K. I.; Koh, H. Y.; Lee, E.; Kim, J. H.
Tetrahedron 2000, 56, 5657. (g) Yamazaki, H.; Tsuchida, Y.;
Satoh, H.; Kawashima, S.; Hanaki, H.; Hiramatsu, K. J.
Antibiot. 2000, 53, 546. (h) Yamazaki, H.; Tsuchida, Y.;
Satoh, H.; Kawashima, S.; Hanaki, H.; Hiramatsu, K. J.
Antibiot. 2000, 53, 551. (i) For prior publications from the
laboratories of Bristol-Myers Squibb see: Springer, D. M.;
Luh, B.-Y.; Bronson, J. J. Bioorg. Med. Chem. Lett. 2001, 11,
797. (j) D’Andrea, S. V.; Bonner, D.; Bronson, J. J.; Clark, J.;
Denbleyker, K.; Fung-Tomc, J.; Hoeft, S. E.; Hudyma, T. W.;
Matiskella, J. D.; Miller, R. F.; Misco, P.F.; Pucci, M.; Ster-
zycki, R.; Tsai, Y.; Ueda, Y.; Wichtowski, J. A.; Singh, J.;
Kissick, T. P.; North, J. T.; Pullockaran, A.; Humora, M.;
Boyhan, B.; Vu, T.; Fritz, A.; Heikes, J.; Fox, R.; Godfrey,
J. D; Perrone, R.; Kaplan, M.; Kronenthal, D.; Mueller, R. H.
Tetrahedron 2000, 56, 5687. (k) Singh, J.; Kim, O. K.; Kissick,
T. P.; Natalie, K. J.; Zhang, B.; Crispino, G. A.; Springer,
D. M.; Wichtowski, J. A.; Zhang, Y.; Goodrich, J.; Ueda, Y.;
Luh, B. Y.; Burke, B. D.; Brown, M.; Dutka, A. P.; Zheng, B.;
Hsieh, D.-M.; Humora, M. J.; North, J. T.; Pullockaran, A. J.;
Livshits, J.; Swaminathan, S.; Gao, Z.; Schierling, P.; Ermann,
P.; Perrone, R. K.; Lai, M. C.; Gougoutas, J. Z.; DiMarco,
J. D.; Bronson, J. J.; Heikes, J. E.; Grosso, J. A.; Kronenthal,
D. R.; Denzel, T. W.; Mueller, R. H. Org. Process Res. Dev.
2000, 4, 488. (l) Kim, O. K.; Hudyma, T. W.; Matiskella, J. D.;
Ueda, Y.; Bronson, J. J.; Mansuri, M. M. Bioorg. Med. Chem.
Lett. 1997, 7, 2753. (m) Kim, O. K.; Ueda, Y.; Mansuri,
M. M.; Russell, J. W.; Bidwell, V. W. Bioorg. Med. Chem.
Lett. 1997, 7, 1945.
1
time H NMR analysis indicates no more product is
forming, but the presence of decomposition products is
increasing. The reaction is concentrated, and then
chromatographed on silica using CH3OH/CH2Cl2 as
eluants to afford the title thiopyridone (0.110 g, 0.285
mmol). 1H NMR (300 MHz, CDCl3): d 8.48 (t, 1H, J=7
Hz, CNH), 7.41 (d, 2H, J=8 Hz, C¼CH), ), 7.15 (d,
2H, J=8 Hz, C¼CH), 4.06 (t, 2H, J=7 Hz, CH2), 3.63
(dt, J=7, 7 Hz, CH2), 1.47 (s, 9H, C(CH3)3), 1.46 (s,
9H, C(CH3)3).
B. Cephem diacid 12 (0.153 g, 0.285 mmol) is dissolved
in 5 mL of 1:1 CH3OH/CH2Cl2, and N,N0-di(tert-butoxy-
carbamyl)-N00-[2-(4-thioxo-4H-pyridin-1-yl)-ethyl]-guani-
dine (0.110 g, 0.285 mmol) is added. The mixture is
stirred at room temperature for 1 h, and then con-
centrated. The residue is triturated with ether and ethyl
acetate, and the solids collected are then stirred in ethyl
acetate for ꢃ30 min and then filtered. The material is
suspended in 3 mL CH2Cl2, and 1 mL TFA is added.
The mixture is stirred at rt for 3 h and then evaporated.
The residue is suspended in some CCl4, which is then
evaporated. Ether is added to triturate the cephem, and
this material is collected by filtration, redissolved in
methanol, and then triturated again using ether. The
solids are collected and washed with ethyl acetate to
afford cephem 60 bis-trifluoroacetate (0.063 g, 0.068
1
mmol) as a yellow solid. H NMR (300 MHz, DMSO):
d 8.69 (d, 2H, J=8 Hz, C¼CH), 8.07 (s, 1H, ArH), 8.02
(d, 2H, J=8 Hz, C¼CH), 7.72(d, 1H, J=16 Hz,
ArCH¼C), 7.55 (s, 1H, ArH), 6.69 (d, 1H, J=16 Hz,
C¼CHCO2H), 5.69 (dd, J=5, 8 Hz, R1R2CHNR3),
5.14 (d, 1H, J=5 Hz, CH(CNR)(SR)), 4.56–4.46 (m,
2H), 4.40–4.31 (m, 2H), 3.97 (s, 2H, SCH2). MS (ESI)
m/e 697 (M+).
5. A group from Eli Lilly found that in a series of C-3 acetate
cephems, a derivative bearing a 2,5-dichlorothiophenyl acetamide
group at C-7 was extremely potent against staphylococcus species.
The optimal halogen substitution to maximize anti-staphylococcus
activity on the thiophenyl ring was the 2,5-dichloro pattern. In
largely unpublished observations, our group at Bristol-Myers
Squibb has found this SAR trend at C-7 to be quite general for
anti-MRSA activity irrespective of the nature of the C-3
group. For the original work by Lilly, see: Huffman, G. W. US
Patent 3,907,784, 1975. Chem. Abstr. 1975, 84, 17395.
Acknowledgements
We thank our colleagues in the Department of Micro-
biology in Wallingford, CT for the biological data
reported in this work. We also thank the Department of
Analytical Research in Wallingford, CT, for analytical
data, and Mr. Robert Perrone of the Department of
Pharmaceutics Research and Development in New