F. Zammattio, J.-P. Quintard et al.
FULL PAPER
tin, B. Elissondo, A. Rahm, M. Pereyre, Tetrahedron 1989, 45,
1017–1028.
(50 mL), dried with MgSO4 and concentrated in vacuo. The crude
product was purified by chromatography on silica gel.
[4]
[5]
a) Y. Yamamoto, K. Maruyama, K. Matsumoto, J. Chem. Soc.,
Chem. Commun. 1983, 489–490; b) N. S. Isaacs, R. L. Mar-
shall, D. J. Young, Tetrahedron Lett. 1992, 33, 3023–3024.
a) A. Gambaro, D. Marton, V. Peruzzo, G. Tagliavini, J. Or-
ganomet. Chem. 1981, 204, 191–196; b) A. Gambaro, D. Mar-
ton, V. Peruzzo, G. Tagliavini, J. Organomet. Chem. 1982, 226,
149–155; c) A. Gambaro, P. Ganis, D. Marton, V. Peruzzo, G.
Tagliavini, J. Organomet. Chem. 1982, 231, 307–314.
a) Y. Yamamoto, H. Yatagai, Y. Naruta, K. Maruyama, J. Am.
Chem. Soc. 1980, 102, 7107–7109; b) Y. Yamamoto, H. Yatagai,
Y. Ishihara, N. Maeda, K. Maruyama, Tetrahedron 1984, 40,
2239–2246.
a) S. E. Denmark, E. J. Weber, J. Am. Chem. Soc. 1984, 106,
7970–7971; b) S. E. Denmark, T. Wilson, T. M. Willson, J. Am.
Chem. Soc. 1988, 110, 984–986; c) S. E. Denmark, E. J. Weber,
T. M. Wilson, T. M. Willson, Tetrahedron 1989, 45, 1053–1065;
d) G. E. Keck, S. M. Dougherty, K. A. Savin, J. Am. Chem.
Soc. 1995, 117, 6210–6223.
General Procedure for the Allylstannation of Aldehydes with InX3
Method A. With Crotyltri-n-butyltin 1: To a solution of aldehyde
(1 mmol) in CH2Cl2 (or MeCN; 10 mL) was added crotyltri-n-bu-
tyltin (280 µL, 1.1 mmol) and InX3 (1 mmol). The reaction mixture
was stirred at 25 °C and monitored by TLC. After consumption of
the aldehyde, the reaction was quenched with HCl (0.1 , 10 mL)
and extracted with diethyl ether (3ϫ20 mL). The organic layer was
then washed with brine, dried with MgSO4 and concentrated in
vacuo. The crude product was purified by chromatography on silica
gel.
[6]
[7]
Method B. With Polymer-Supported Crotyltin 3: To a suspension of
polymer (1.0 g, 1.1 mmol) in CH2Cl2 (or MeCN; 10 mL) were
added aldehyde (1.0 mmol) and InX3 (1.0 mmol). The reaction
mixture was stirred for 18 h at 25 °C and then quenched with HCl
(0.1 , 10 mL). The polymer was filtered and washed with diethyl
ether (6ϫ30 mL) and then with THF (6ϫ30 mL). The filtrate was
extracted with diethyl ether and washed with brine (50 mL), dried
with MgSO4 and concentrated in vacuo.
[8]
[9]
S. Watrelot-Bourdeau, J.-L. Parrain, J.-P. Quintard, J. Org.
Chem. 1997, 62, 8261–8263.
a) G. E. Keck, D. E. Abbott, E. P. Boden, E. J. Enholm, Tetra-
hedron Lett. 1984, 25, 3927–3930; b) A. Boaretto, D. Marton,
G. Tagliavini, P. Ganis, J. Organomet. Chem. 1987, 321, 199–
207; c) R. L. Marshall, D. J. Young, Tetrahedron Lett. 1992, 33,
2369–2370; d) J. A. Marshall, K. W. Hinkle, J. Org. Chem.
1995, 60, 1920–1921; e) J. A. Marshall, K. W. Hinkle, J. Org.
Chem. 1996, 61, 105–108; f) T. Miyai, K. Inoue, M. Yasuda,
A. Baba, Synlett 1997, 699–700; g) J. Becker, R. Frölich, K.
Salorinne, D. Hoppe, Eur. J. Org. Chem. 2007, 3337–3348.
Y. Yamamoto, N. Maeda, K. Maruyama, J. Chem. Soc., Chem.
Commun. 1983, 742–743.
J.-M. Chrétien, F. Zammattio, D. Gauthier, E. Le Grognec, M.
Paris, J.-P. Quintard, Chem. Eur. J. 2006, 12, 6816–6828.
a) G. Bartoli, M. Bosco, A. Giuliani, E. Marcantoni, A. Palmi-
eri, M. Petrini, L. Sambri, J. Org. Chem. 2004, 69, 1290–1297;
b) G. Bartoli, A. Giuliani, E. Marcantoni, M. Massaccesi, P.
Melchiorre, S. Lanari, L. Sambri, Adv. Synth. Catal. 2005, 347,
1673–1680.
a) J. Nokami, L. Anthony, S.-I. Sumida, Chem. Eur. J. 2000, 6,
2909–2913; b) S.-I. Sumida, M. Ohga, J. Mitani, J. Nokami, J.
Am. Chem. Soc. 2000, 122, 1310–1313; c) J. Nokami, K. Nomi-
yama, S. Matsuda, N. Imai, K. Kataoka, Angew. Chem. Int.
Ed. 2003, 42, 1273–1276; d) K.-T. Tan, S.-S. Chng, H.-S.
Cheng, T.-P. Loh, J. Am. Chem. Soc. 2003, 125, 2958–2963.
G.-L. Li, G. Zhao, J. Org. Chem. 2005, 70, 4272–4278.
J. A. Marshall, G. S. Welmaker, B. W. Gung, J. Am. Chem. Soc.
1991, 113, 647–656.
a) T. I. Moder, C. K. Hsu, F. R. Jensen, J. Org. Chem. 1980,
45, 1008–1010; b) G. Dumartin, J.-P. Quintard, M. Pereyre, J.
Organomet. Chem. 1983, 252, 37–46.
a) G. E. Keck, K. A. Savin, E. N. K. Cressman, D. E. Abbott,
J. Org. Chem. 1994, 59, 7889–7896; b) Y. Nishigaichi, A.
Takuwa, Tetrahedron Lett. 1999, 40, 109–112.
I. Shibata, N. Yoshimura, M. Yabu, A. Baba, Eur. J. Org.
Chem. 2001, 3207–3211.
M. Yasuda, T. Miyai, I. Shibata, A. Baba, R. Nomura, H. Mat-
suda, Tetrahedron Lett. 1995, 36, 9497–9500.
T. Carofiglio, D. Marton, G. Tagliavini, Organometallics 1992,
11, 2961–2963.
Products Distribution in Homoallylic Alcohols: The homoallylic
1
alcohols were firmly characterised on the basis of their H NMR
spectra in agreement with the literature[9d,13c,14,21] and their iso-
meric distribution was determined by GC analysis. GC (homoal-
lylic alcohols derived from benzaldehyde): tR = 7.03 (anti), 7.16
(syn), 7.81 (E), 7.96 (Z) min. GC (homoallylic alcohols derived
from p-nitrobenzaldehyde): tR = 12.60 (anti), 12.66 (syn), 13.06 (E),
13.24 (Z) min. GC (homoallylic alcohols derived from cyclohexane-
carbaldehyde): tR = 6.77 (anti), 6.90 (syn), 7.64 (E), 7.74 (Z) min.
GC (homoallylic alcohols derived from octanal): tR = 7.25 (anti),
7.34 (syn), 7.89 (E), 8.01 (Z) min.
[10]
[11]
[12]
Acknowledgments
We gratefully acknowledge “Nantes Métropole” for a grant (J.-M.
C.) as well as the CNRS and the MENRT for financial support.
We are indebted to Chemtura (Bergkamen) for the gift of tri-n-
butyltin hydride and tri-n-butyltin chloride.
[13]
[1] For review articles, see: a) Y. Yamamoto, N. Asao, Chem. Rev.
1993, 93, 2207–2293; b) Y. Nishigaichi, A. Takuwa, Y. Naruta,
K. Maruyama, Tetrahedron 1993, 49, 7395–7426; c) J. A. Mar-
shall, Chem. Rev. 1996, 96, 31–47; d) E. J. Thomas, Chem.
Commun. 1997, 411–418; e) J. A. Marshall in Lewis Acids in
Organic Synthesis (Ed.: H. Yamamoto), Wiley-VCH,
Weinheim, 2000, vol. 1, pp. 453–522; f) J. A. Marshall, Chem.
Rev. 2000, 100, 3163–3185; g) S. E. Denmark, N. G. Almstead
in Modern Carbonyl Chemistry (Ed.: J. Otera), Wiley-VCH,
Weinheim, 2000, pp. 299–401; h) S. E. Denmark, J. Fu, Chem.
Rev. 2003, 103, 2763–2793; i) E. J. Thomas, Chem. Rec. 2007,
7, 115–124; j) J. A. Marshall, J. Org. Chem. 2007, 72, 8153–
8166.
[2] a) W. R. Roush in Comprehensive Organic Synthesis: Selectivity,
Strategy & Efficiency in Modern Organic Chemistry (Eds.:
B. M. Trost, I. Fleming), Pergamon Press, Oxford, 1991, vol.
2, pp. 1–53; b) Y. Yamamoto, J. Org. Chem. 2007, 72, 7817–
7831.
[3] a) C. Servens, M. Pereyre, J. Organomet. Chem. 1972, 35, C20–
C21; b) V. J. Jephcote, A. J. Pratt, E. J. Thomas, J. Chem. Soc.,
Chem. Commun. 1984, 800–802; c) J.-P. Quintard, G. Dumar-
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
A. N. Thadani, R. A. Batey, Org. Lett. 2002, 4, 3827–3830.
Received: December 13, 2007
Published Online: February 12, 2008
1688
www.eurjoc.org
© 2008 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2008, 1681–1688