Notes and References
X
X
PPh2
PPh2
† E-mail: bennett@rsc.anu.edu.au
‡ dcpe = bis(dicyclohexylphosphino)ethane, Cy2PCH2CH2PCy2
§ Supplementary data describing full experimental details are available.
(See http://www.rsc.org/suppdata/cc/1998/1307)
¶ Selected NMR data for compounds 3, 4, 6–9: 3a: 31P{1H} NMR (CDCl3,
80.96 MHz) d 65.5 (s). 3b: 31P{1H} NMR (CDCl3, 80.96 MHz) d 65.8 (s);
19F NMR (CDCl3, 188.1 MHz) d 2132.6 [app. t, J(HF) 9.4 Hz]. 4a:
31P{1H} NMR (C6D6, 80.96 MHz) d 47.2 [t, 2J(PP) 26.6 Hz], 52.1 [t, 2J(PP)
26.6 Hz]; 4b: 31P{1H} NMR (C6D6, 80.96 MHz) d 47.4 [t, 2J(PP) 27.4 Hz],
6a X = H
6b X = F
confirmed by X-ray diffraction.∑ The stronger oxidising agent,
H2O2, was necessary to accomplish complete oxidation to the
bis(phosphine oxides), C12H8X2{P(O)Ph2}2 8a and 8b.
2
52.3 [t, J(PP) 27.4 Hz]; 19F NMR (C6D6, 188.1 MHz) d 2139.6 [app. t,
´
J(HF) 10.2 Hz]. 6a: 31P{1H} NMR (C6D6, 80.96 MHz) d 26.2 (s). 6b:
31P{1H} NMR (C6D6, 80.96 MHz) d 25.6 (s); 19F NMR (C6D6, 188.1
MHz) d 2138.5 [app. t, J(HF) 10.3 Hz]. 7a: 31P{1H} NMR [(CD3)2CO,
80.96 MHz] d 26.6 [d, 3J(PP) 37.4 Hz], 31.0 [t, 3J(PP) 37.4 Hz]. 7b:
31P{1H} NMR [(CD3)2CO, 80.96 MHz] d 26.3 [d, 3J(PP) 36.7 Hz], 31.0 [t,
3J(PP) 36.7 Hz]; 19F NMR [(CD3)2CO, 188.1 MHz] d 2135.3 (m), 2136.0
(m). 8a: 31P{1H} NMR [(CD3)2CO, 80.96 MHz] d 34.3 (br s); 8b: 31P{1H}
NMR [(CD3)2CO, 80.96 MHz] d 33.4 (br s); 19F NMR [(CD3)2CO] 188.1
MHz] d 2133.9 (br). 9a: 31P{1H} NMR (C6D6, 80.96 MHz) d 215.3 [dd,
3J(PP) 24.0, 3J(PP) 37.0 Hz], 67.7 [dd, 2J(PP) 46.4, 3J(PP) 24.0 Hz], 72.9
[dd, 2J(PP) 46.4, 3J(PP) 37.0 Hz].
Ph2
X
X
P
O
O
X
X
PPh2
P
Ph2
P
O
Ph2
7a X = H
7b X = F
8a X = H
8b X = F
∑ Crystal data and data collection parameters: 3b: C36H28Br2F2NiP2, M
= 779.07, red–brown rod, crystal size 0.42 3 0.14 3 0.12 mm, monoclinic,
space group P21/c (no. 14), a = 8.633(2), b = 22.707(3), c = 16.237(3) Å,
b = 97.49(2)°, U = 3155.8(9) Å3, Z = 4, Dc = 1.640 g cm23, m(Mo-
Ka) = 32.94 cm21, F(000) = 1560, analytical absorption correction; 7474
unique data (2qmax = 55.1°), 4594 with I > 2s(I); R = 0.046, wR = 0.036,
GOF = 1.40.
7b: C36H28F2OP2, M = 576.56, colourless plates, crystal size 0.44 3
0.19 3 0.06 mm, monoclinic, space group Cc (no. 9), a = 9.541(3), b
= 28.86(1), c = 11.187(4) Å, b = 106.87(3)°, U = 2948(2) Å3, Z = 4,
Dc = 1.229 g cm23, m(Mo-Ka) = 1.88 cm21, F(000) = 1200, analytical
absorption correction; 2667 unique data (2qmax = 50.1°), 1415 with I >
3s(I); R = 0.043, wR = 0.035, GOF = 1.33. CCDC 182/847.
Theoretical calculations7 suggest that the PPh2 moiety, like
CO2Me, is electron withdrawing. The regiospecificities des-
cribed above are indeed similar to those observed in the
insertion of methyl 2-butynoate, MeC·CCO2Me, into complex
1b, where the direction of insertion was believed to be
electronically controlled and to require p-coordination of the
alkyne.1–3 In agreement, preferential side bonding of the C·C
bond of Ph2PC·CMe to the Ni centre, as opposed to
coordination via the phosphorus lone pair, has been observed.
The reaction between equimolar quantities of [Ni(cod)2], dcpe
2
2
and Ph2PC·CMe gave the Ni0–h -alkyne species, [Ni(h -
Ph2PC·CMe)(dcpe)] 9a, as the main product; a small amount of
the P-bonded isomer 9b, was also formed (Scheme 3).
1 M. A. Bennett and E. Wenger, Chem. Ber./Recueil, 1997, 130, 1029 and
references therein.
2 M. A. Bennett and E. Wenger, Organometallics, 1995, 14, 1267.
3 M. A. Bennett and E. Wenger, Organometallics, 1996, 15, 5536.
4 A. J. Carty, N. J. Taylor and D. K. Johnson, J. Am. Chem. Soc., 1979, 101,
5422; D. K. Johnson, T. Rukachaisirikul, Y. Sun, N. J. Taylor, A. J. Canty
and A. J. Carty, Inorg. Chem., 1993, 32, 5544.
Cy2
P
Cy2
P
[Ni(cod)2]
+ dcpe
Ni
+
Ph2P Ni
+
Ph2PC≡CMe
P
Cy2
P
Cy2
5 A. J. Carty, N. K. Hota, T. W. Ng, H. A. Patel and T. J. OAConnor, Can.
J. Chem., 1971, 49, 2706.
Ph2P
9b
9a
6 A. Avey, D. M. Schut, T. J. R. Weakley, and D. R. Tyler, Inorg. Chem.,
1993, 32, 233; M. A. Bakar, A. Hills, D. L. Hughes and G. J. Leigh,
J. Chem. Soc., Dalton Trans., 1989, 1417.
7 E. Louattani, A. Lledo´s, J. Suades, A. Alvarez-Larena and J. F. Piniella,
Organometallics, 1995, 14, 1053.
Scheme 3
This chemistry is currently being investigated as a potential
method for the synthesis of water-soluble diphosphines. We
thank the Royal Society for the award of a Fellowship to
C. J. C.
Received in Cambridge, UK, 24th March 1998; 8/02291G
1308
Chem. Commun., 1998