Organic Letters
Letter
with the in situ generation of N−H aldimines and ketimines,
this condensation was never observed.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
Finally, radical−radical coupling was achieved with 4-
cyanopyridine.4l,12 In the presence of an increased amount of
Hantzch ester, 2 equiv of the cyanopyridine were found to be
sufficient to give unprotected 1° amines on quaternary centers
(α-diarylalkylamines) in high to near-quantitative yields
(Scheme 4b).
The first step of our method is a Lewis acid/Brønsted acid
promoted N−H imine formation between ammonia and the
carbonyl group (Scheme 5). Simultaneously, visible-light
Experimental details, full and additional optimization
tables, characterization data, and associated NMR
AUTHOR INFORMATION
■
Corresponding Author
ORCID
Scheme 5. Proposed Mechanism for the Formation and
Trapping of Unprotected Primary α-Amino Radicals
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We gratefully acknowledge the Max-Planck Society and
DARPA (Contract No. W911NF-16-1-0557) for generous
financial support. We thank Ms. Sooyeon Moon (MPIKG) for
analytical support, Ms. Mara Guidi (MPIKG) for the scale-up
reaction, as well as Dr. Bart Pieber (MPIKG) and Dr. Matthew
Plutschack (MPIKG) for fruitful discussions.
REFERENCES
■
(1) (a) Lawrence, S. A. Amines: Synthesis, Properties and Applications;
Cambridge University Press: Cambridge, 2005. (b) Kahl, T.;
irradiation produces an exited PC1* that can be reductively
quenched by the sacrificial donor (iPr2NEt or Hantzsch ester)
to afford a Ru(bpy)3 species. The activated imine, either by
̈
̈
̈
Schroder, K. W.; Lawrence, F. R.; Marshall, W. J.; Hoke, H.; Jackh,
R. Aniline. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-
VCH: Weinheim, 2011; p 465. (c) Roose, P.; Eller, K.; Henkes, E.;
1+
the Lewis or Brønsted acid, is then selectively reduced to form
an unprotected α-amino alkyl radical. In the absence of an
added trapping agent, the radical adds to the activated starting
material to generate the formally dimerized aminopinacol
product. Introducing thiophenol as a hydrogen atom transfer
catalyst4m enables the α-amino alkyl radical to obtain an H
atom from the Hanztch ester to form unprotected primary
amines. When 4-cyanopyridine was added to the system
instead of thiophenol, a second photoredox cycle reduces the
cyanopyridine to a radical anion that reacts with the α-amino
alkyl radical to form the unprotected tertiary amine following
elimination of a cyanide anion.4l,12
In conclusion, a photocatalytic method has been developed
to synthesize primary amines directly from ammonia and
aldehydes/ketones. N−H imines are formed as intermediates,
promoted, and further activated by a Lewis/Brønsted acid and
are subsequently reduced to generate an unprotected α-amino
carbon radical. This radical can dimerize to produce
unprotected vicinal diamines and can engage in other
transformations to construct primary amines, such as
thiophenol-catalyzed hydrogen atom abstraction and radical−
radical coupling with 4-cyanopyridine. The chemoselective
reduction is only possible due to the larger change in the
reduction potential of activated imines as compared to the
respective carbonyls. The expansion of this strategy in
additional transformations is currently underway.
̈
Rossbacher, R.; Hoke, H. Amines, Aliphatic, In Ullmann’s
Encyclopedia of Industrial Chemistry; Wiley-VCH: Weinheim, 2015, 1.
(2) (a) Ricci, A. Modern Amination Methods; Wiley-VCH:
Weinheim, 2000. (b) Shibasaki, M.; Kanai, M. Chem. Rev. 2008,
108, 2853. (c) Kobayashi, S.; Mori, Y.; Fossey, J. S.; Salter, M. M.
Chem. Rev. 2011, 111, 2626. (d) Xie, J. H.; Zhu, S. F.; Zhou, Q. L.
Chem. Rev. 2011, 111, 1713. (e) Szostak, M.; Spain, M.; Procter, D. J.
Chem. Soc. Rev. 2013, 42, 9155. (f) Lee, K. N.; Ngai, M. Y. Chem.
Commun. 2017, 53, 13093.
(3) (a) Legnani, L.; Bhawal, B. N.; Morandi, B. Synthesis 2017, 49,
776. (b) Klinkenberg, J. L.; Hartwig, J. F. Angew. Chem., Int. Ed. 2011,
50, 86.
(4) (a) Zhong, Y. W.; Xu, M. H.; Lin, G. Q. Org. Lett. 2004, 6, 3953.
(b) Rao, C. N.; Hoz, S. J. Am. Chem. Soc. 2011, 133, 14795.
(c) Nakajima, M.; Fava, E.; Loescher, S.; Jiang, Z.; Rueping, M.
Angew. Chem., Int. Ed. 2015, 54, 8828. (d) Okamoto, S.; Kojiyama, K.;
Tsujioka, H.; Sudo, A. Chem. Commun. 2016, 52, 11339. (e) Fuentes
de Arriba, A. L.; Urbitsch, F.; Dixon, D. J. Chem. Commun. 2016, 52,
14434. (f) Qi, L.; Chen, Y. Y. Angew. Chem., Int. Ed. 2016, 55, 13312.
(g) Lee, K. N.; Lei, Z.; Ngai, M.-Y. J. Am. Chem. Soc. 2017, 139, 5003.
(h) Hager, D.; MacMillan, D. W. C. J. Am. Chem. Soc. 2014, 136,
́
16986. (i) Jeffrey, J. L.; Petronijevic, F. R.; MacMillan, D. W. C. J. Am.
Chem. Soc. 2015, 137, 8404. (j) Uraguchi, D.; Kinoshita, N.; Kizu, T.;
Ooi, T. J. Am. Chem. Soc. 2015, 137, 13768. (k) Fava, E.; Millet, A.;
Nakajima, M.; Loescher, S.; Rueping, M. Angew. Chem., Int. Ed. 2016,
55, 6776. (l) Chen, M.; Zhao, X.; Yang, C.; Xia, W. Org. Lett. 2017,
19, 3807. (m) Guo, X.; Wenger, O. S. Angew. Chem., Int. Ed. 2018, 57,
2469. (n) Wang, R.; Ma, M.; Gong, X.; Panetti, G. B.; Fan, X.; Walsh,
P. J. Org. Lett. 2018, 20, 2433. (o) van As, D. J.; Connell, T. U.;
Brzozowski, M.; Scully, A. D.; Polyzos, A. Org. Lett. 2018, 20, 905.
(p) Freeman, D. B.; Furst, L.; Condie, A. G.; Stephenson, C. R. J. Org.
D
Org. Lett. XXXX, XXX, XXX−XXX