Pericyclic Alternative to the Aldol Reaction
J . Org. Chem., Vol. 63, No. 15, 1998 5217
Sch em e 1a
a “pericyclic” alternative to the aldol reaction, the latter
being of paramount importance in organic synthesis.19
In effect, the product of this [2 + 2] cycloaddition, namely
a 2-oxetanone (â-lactone), and the product of an aldol
reaction, for instance, a â-hydroxy ester, can be inter-
converted into each other via alcoholysis or cyclization,
respectively (Scheme 1). However, two drawbacks have
hampered the development of this reaction: First, in
general, nonnucleophilic ketenes are quite unreactive
toward carbonyl compounds unless suitable catalysts are
employed.3,11 Second, the stereoselectivity of the cycload-
dition is in general poor, although efficient stereocontrol
for the catalyzed version has been achieved in several
cases.3,11,20
a
The possible substituents at the different positions are not
specified.
Within this context, the aim of the present work has
been to explore computationally the possibility of achiev-
ing high stereocontrol in the [2 + 2] cycloaddition
between C2v-symmetric ketenes and homochiral alde-
hydes. In addition, since we have developed recently21
a method that allows the [2 + 2] cycloaddition between
unactivated ketenes and aromatic or R,â-unsaturated
aldehydes, we have verified the predictions made by
theoretical methods. The final goal of the work has been
to improve our understanding of the reasons underlying
the stereocontrol in this kind of cycloadditions, thus
yielding a complementary alternative to aldol-type reac-
tions.
Woodward and Hoffmann12 or, more recently the [π2s +
(π2s + 2s)] mechanism.13
π
According to the above-mentioned scheme, electrophilic
ketenes, namely those incorporating electron-withdraw-
ing groups, will be especially prone to the ipso interaction
represented in Scheme 1. If the other partner is in turn
nucleophilic enough, the relative importance of the ipso
interaction is quite large and the cycloaddition is actually
a two-step reaction in which the Cipso-Y bond is formed
first, followed by a ring closure to form the CR-X bond.
This is the case in the reaction between ketenes and
imines, also known as the Staudinger reaction. This
nonconcerted mechanism has been studied by our group14
and by others.15 In other cycloadditions, the interaction
between ketenes and π-systems is concerted, although
quite asynchronous. In general, the CR-X interaction is
developed to a lesser extent.
Com p u ta tion a l Meth od s
All ab initio calculations described in this work have
been carried out using the GAUSSIAN 9422 suite of
programs. The 6-31G* basis set23 was used, and the
geometries of all the stationary points were fully opti-
mized using analytical gradient techniques.24
Most of the saddle points were located and optimized
using the eigenvector-following algorithm.25 In these
cases, the possible conformers were explored at the HF/
6-31G* and HF/AM126 levels. The conformer distribution
of the diastereomeric cycloadducts was explored by means
of Monte Carlo simulations27 using the MM2* force field28
Recently, we have published two papers concerning the
thermal [2 + 2] cycloaddition between ketenes and
carbonyl compounds.16 This reaction has also been
explored computationally by Rajzmann17 and Yamabe.18
It has been found that this reaction is concerted and
follows a [π2s + (π2s + π2s)] mechanism in the absence of
Lewis acid catalysts. The preparative potential of this
reaction has been explored by different groups.10,11 This
is not surprising since the reaction can be considered as
(19) See, for example: (a) Evans, D. A.; Nelson, J . V.; Taber, T. R.
Top. Stereochem. 1982, 13, 1. (b) Kaiama, T.; Kobayashi, S. In Organic
Reactions; Paquette, L., et al., Eds.; Wiley: New York, 1994; Vol. 46.
(20) (a) Pommier, A.; Pons, J .-M.; Kocienski, P. J . J . Org. Chem.
1995, 60, 7334. (b) Pommier, A.; Pons, J .-M.; Kocienski, P. J .; Wong,
L. Synthesis 1995, 1294. (c) Song, C. E.; Ryu, T. H. R.; Roh, E. J .; Kim,
I. O.; Ha, H.-J . Tetrahedron: Asymmetry 1994, 5, 1215. (d) Tamai, Y.;
Yoshiwara, H.; Someya, M.; Fukumoto, J .; Miyano, S. J . Chem. Soc.,
Chem. Commun. 1994, 2281. (e) Palomo, C.; Miranda, J . I.; Cuevas,
C.; Odriozola, J . M. J . Chem. Soc., Chem. Commun. 1995, 1735. (f)
Tamai, Y.; Someya, M.; Fukumoto, J .: Miyano, S. J . Chem. Soc., Perkin
Trans. 1 1994, 1549.
(21) Arrastia, I.; Coss´ıo, F. P. Tetrahedron Lett. 1996, 37, 7143.
(22) GAUSSIAN 94, Revision B.2: Frisch, M. J .; Trucks, G. W.;
Schlegel, H. B.; Gill, P. M. W.; J ohnson, B. G.; Robbb, M. A.;
Cheeseman, J . R.; Keith, T.; Peterson, G. A.; Montgomery, J . A.;
Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J . V.;
Foresman, J . B.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.,
Andres, J . L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J .;
Binkley, J . S.; Defrees, D. J .; Baker, J .; Stewart, J . P.; Head-Gordon,
M.; Gonzalez, C.; Pople, J . A. Gaussian, Inc., Pittsburgh, PA, 1995.
(23) Hehre, W. J .; Radom, L.; Schleyer, P.v. R.; Pople, J . A. Ab Initio
Molecular Orbital Theory; Wiley: New York, 1986; p 82 and references
therein.
(12) Woodward, R. B.; Hoffmann, R. The Conservation of Orbital
Symmetry; Verlag Chemie-Academic Press: New York, 1970; p 163.
(13) (a) Pasto, D. J . J . Am. Chem. Soc. 1979, 101, 37. (b) Valent´ı,
E.; Perica`s, M. A.; Moyano, A. J . Org. Chem. 1990, 55, 3582. (c)
Krabbenhoft, H. O. J . Org. Chem. 1978, 43, 1305.
(14) (a) Coss´ıo, F. P.; Ugalde, J . M.; Lopez, X.; Lecea, B.; Palomo,
C. J . Am. Chem. Soc. 1993, 115, 995. (b) Coss´ıo, F. P.; Arrieta, A.;
Lecea, B.; Ugalde, J . M. J . Am. Chem. Soc. 1994, 116, 2085. (c) Arrieta,
A.; Ugalde, J . M.; Coss´ıo, F. P.; Lecea, B. Tetrahedron Lett. 1994, 35,
4465. (d) Arrastia, I.; Arrieta, A.; Ugalde, J . M.; Coss´ıo, F. P.; Lecea,
B. Tetrahedron Lett. 1994, 35, 7825. (e) Lecea, B.; Arrastia, I.; Arrieta,
A.; Roa, G.; Lopez, X.; Arriortua, M. I.; Ugalde, J . M.; Coss´ıo, F. P. J .
Org. Chem. 1996, 61, 3070.
(15) (a) Sordo, J . A.; Gonza´lez, J .; Sordo, T. L. J . Am. Chem. Soc.
1992, 114, 6249. (b) Lo´pez, R.; Sordo, T. L.; Sordo, J . A.; Gonza´lez, J .
J . Org. Chem. 1993, 58, 7036. (c) Assfeld, X.; Ruiz-Lo´pez, M. F.;
Gonza´lez, J .; Lo´pez, R.; Sordo, J . A.; Sordo, T. L. J . Comput. Chem.
1994, 15, 479. (d) Lo´pez, R.; Ruiz-Lo´pez. M. F.; Rinaldi, D.; Sordo, J .
A.; Sordo, T. L. J . Phys. Chem. 1996, 100, 10600. (e) Boyd, D. B.
Computer-Assisted Molecular Design Studies of â-Lactam Antibiotics.
In Frontiers on Antibiotic Research; Umezawa, H., Ed.; Academic
Press: Tokyo, 1987; pp 339-356. (f) Cooper, R. D. G.; Daugherty, B.
W.; Boyd, D. B. Pure Appl. Chem. 1987, 59, 485.
(16) (a) Lecea, B.; Arrieta, A.; Roa, G.; Ugalde, J . M.; Coss´ıo, F. P.
J . Am. Chem. Soc. 1994, 116, 9613. (b) Lecea, B.; Arrieta, A.; Lopez,
X.; Ugalde, J . M.; Coss´ıo, F. P. J . Am. Chem. Soc. 1995, 117, 12314.
(17) (a) Pons, J .-M.; Pommier, A.; Rajzmann, M.; Liotard, D.
THEOCHEM 1994, 313, 361. (b) Pons, J .-M.; Oblin, M.; Pommier, A.;
Rajzmann, M.; Liotard, D. J . Am. Chem. Soc. 1997, 119, 3333.
(18) Yamabe, S.; Minato, T.; Osamura, Y. J . Chem. Soc., Chem.
Commun. 1993, 450.
(24) See ref 23, pp 55, 56 and references therein.
(25) Baker, J . J . Comput. Chem. 1986, 7, 385.
(26) Dewar, M. J . S.; Zoebish, E. G.; Healy, E. F.; Stewart, J . J . P.
J . Am. Chem. Soc. 1985, 107, 3902.
(27) (a) Chang, G.; Guida, W. C.; Still, W. C. J . Am. Chem. Soc. 1989,
111, 4379. (b) Saunders: M.; Houk, K. N.; Wu, Y.-D.; Still, W. C.;
Lipton, M.; Chang, G.; Guida, W. J . Am. Chem. Soc. 1990, 112, 1419.
(28) Allinger, N. L. J . Am. Chem. Soc. 1977, 99, 8127.