hydrogen abstraction of a nitrogen-centered radical. When
steroidal alkyl amine 10, which does not have a radical-
to our study was establishment of 5/6 and 5/5 spiro
moieties using an amide.12 Therefore, our cyclization
reaction would be among the first, if not the first,
example of hypoiodite-mediated aminyl radical cycli-
zation that does not utilize nitrogen radical stabiliza-
tion. The THF moiety, which can stabilize carbon
radical generated by transposition of nitrogen radical,
appears to play a crucial role in the cyclization of
nonstabilized nitrogen radical. Indeed, alkyl amines,
such as octyl amine and isoamyl amine, that do not
have carbon-radical stabilizing moiety did not undergo
cyclization. This suggests that when a carbon radical-
stabilizing group is positioned properly, hypoiodite-
mediated radical cyclization can occur without amine
modification, which is often cumbersome to install and
remove.
Our attempts to capture or monitor reaction inter-
mediates of the cyclization failed. A potential reac-
tion mechanism for radical cyclization of primary
amine 10 is shown in Figure 2. Action of iodobenzene
diacetate and iodine on alkyl amine 10 produces
N-iodoamine 12, which generates nitrogen-centered
radical 13. 1,6-Transposition of the radical center from
nitrogen to carbon by intramolecular hydrogen ab-
straction gives a carbon radical 14, which is stabilized
by adjacent oxygen atom through resonance. The
carbon radical 14 reacts with iodine radical to form
iodocyclic ether 15. Oxygen atom-assisted removal
of iodide produces oxacarbenium ion 16, which is
then quenched by the adjacent amine group to afford
oxazaspiroketal 11.
ꢀ
stabilizing group, was subjected to Suarez hypoiodite
oxidation10 in the presence of iodobenzene diacetate and
iodine, aminyl radical cyclization occurred smoothly (0 °C,
10 min, 90%) to afford the desired cyclization product
11 in a regio- and stereoselective fashion. Such a facile
cyclization was quite surprising because hypoiodite-
mediated aminyl radical cyclizations typically involve
nitrogen radical-stabilizing groups,11 such as cyana-
mide, amide, nitroamine, phosphoro amidate, and
sulfonamide groups, to make the radicals more reac-
tive toward hydrogen abstraction. The closest example
(6) Kim, Y. C.; Che, Q. -M; Gunatilaka, A. A. L.; Kingston, D. G. I.
J. Nat. Prod. 1996, 59, 283.
(7) (a) Lee, S.; LaCour, T. G.; Lantrip, D.; Fuchs, P. L. Org. Lett.
2002, 4, 313. (b) Lee, S.; Fuchs, P. L. Org. Lett. 2002, 4, 317. (c) Lee, S.;
Fuchs, P. L. Org. Lett. 2004, 6, 1437. (d) Lee, S.; Fuchs, P. L. Org. Lett.
2009, 11, 5.
(8) (a) Uhle, F. C. J. Am. Chem. Soc. 1953, 75, 2280. (b) Uhle, F. C. J.
Am. Chem. Soc. 1961, 83, 1460. (c) Zha, X.; Sun, H.; Zhang, Y. Chem.
Biodiversity 2007, 4, 25.
(9) Wei, G.; Wang, J.; Du, Y. Bioorg. Med. Chem. Lett. 2011, 21,
2930.
Having successfully prepared steroidal oxazaspiro-
ketal 11, we next investigated synthesis of bissteroidal
pyrazine 21. Removal of the C3 acetate group of
(10) (a) Meystre, C.; Heusler, K.; Kalvoda, J.; Wieland, P.; Anner,
G.; Wettstein, A. Helv. Chim. Acta 1962, 45, 1317. (b) Danishefsky, S. J.;
Armistead, D. M.; Wincott, F. E.; Selnick, H. G.; Hungate, R. J. Am.
ꢀ
Chem. Soc. 1987, 109, 8117. (c) Hernandez, R.; Velazquez, S. M.; Suarez,
E.; Rodriguez, M. S. J. Org. Chem. 1994, 59, 6395. (d) Betancor, C.;
ꢀ
Freire, R.; Perez-Martı
Francisco, C. G.; Freire, R.; Herrera, A. J.; Martı
ꢀ
´
n, I.; Suarez, E. Org. Lett. 2002, 4, 1295. (e)
ꢀ
n, I. P.; Suarez, E. Org.
´
Lett. 2002, 4, 1959–3337. (f) Lee, J. S.; Fuchs, P. L. Org. Lett. 2003, 5,
2247.
(11) (a) Neale, R. S. Synthesis 1971, 1. (b) Baldwin, S. W.; Doll, R. J.
ꢀ
Tetrahedron Lett. 1979, 20, 3275. (c) Betancor, C.; Concepcion, J. I.;
ꢀ
ꢀ
Hernandez, R.; Salazar, J. A.; Suarez, E. J. Org. Chem. 1983, 48, 4430.
ꢀ
ꢀ
(d) Armas, P.; Francisco, C. G.; Hernandez, R.; Salazar, J. A.; Suarez, E.
ꢀ
J. Chem. Soc., Perkin Trans I 1988, 3255. (e) Carrau, R.; Hernandez, R.;
ꢀ
Suarez, E.; Betancor, C. J. Chem. Soc., Perkin Trans I 1987, 937. (f)
Dorta, R. L.; Francisco, C. G.; Suarez, E. J. Chem. Soc., Chem. Comm.
ꢀ
ꢀ ꢀ
n, A.; Perez-Martın, I.; Suarez, E. Org. Lett. 2005,
´ ´
1989, 1168. (g) Martı
7, 2027. Phosphoroamidate: (h) Armas, P.; Carrau, R.; Concepcion,
ꢀ
ꢀ
ꢀ
J. I.; Francisco, C. G.; Hernandez, R.; Suarez, E. Tetrahedron Lett.
1985, 26, 2493. (i) Togo., H.; Hoshina, Y.; Muraki, T.; Nakayma, H.;
Yokoyama, M. J. Org. Chem. 1998, 63, 5193. (j) Nikishin, G. I.;
Troyansky, F.; Lazareva, M. I. Tetrahedron Lett. 1985, 26, 1877. (k)
ꢀ
Francisco, C. G.; Herrera, A. J.; Suarez, E. J. Org. Chem. 2003, 68,
1012.
ꢀ
ꢀ
(12) Hernandez, R.; Medina, M. C.; Suarez, E. Tetrahedron Lett.
1987, 28, 2533.
Figure 2. Proposed mechanism for oxazasprioketal formation
via aminyl radical cyclization of alkylamine 10.
4768
Org. Lett., Vol. 13, No. 18, 2011