H), 1.35 (s, 9 H). 3a: mp 113–115 °C; 1H NMR(C6D6), d 8.80 (d, 2JHP 24.9
Hz, 1 H), 7.20 (t, JHH 7.6 Hz, 1 H), 6.98 (d, JHH 7.4 Hz, 2 H), 6.83 (m, 2 H),
6.80 (s, 4 H), 6.66 (d, JHH 8.5 Hz, 2 H), 2.18 (s, 12 H), 2.08 (s, 6 H); HRMS
however. Acetophenone, benzophenone and cyclohexanone
showed no evidence of phosphaalkene formation and yielded
extensive amounts of DmpPNPDmp over time.
(EI) m/z calc. for
C31H30PCl 468.1776; found 468.1788. 3b: mp
Effords to extend the reactivity of phosphoranylidenephos-
phines to systems having less steric hindrance than Dmp or
Mes* have been partially successful. Attempts to isolate
TripPNPMe3 (Trip = 2,4,6-Pri3C6H2) by reduction of TripPCl2
with Zn dust in the presence of PMe3 resulted in rapid formation
of (TripP)3.12 Addition of benzaldehyde, however, to such
reactions results in mixtures of (TripP)3 and TripPNC(H)Ph
{31P{1H} (C6D6), d 254.7; 1H NMR, d 8.99 [TripPNC(H)Ph, d,
JHP 25.6 Hz]}, suggesting the presence of a transient
TripPNPMe3 capable of effecting phosphaalkene formation.
Reactions of phosphoranylidenephosphines with aldehydes
would be of greater synthetic value if the more readily handled
(and cheaper) PPh3 could replace PMe3 in these reactions.
Unfortunately, efforts to prepare DmpPNPPh3 by reduction of
DmpPCl2 with Zn in the presence of PPh3 resulted in isolation
of DmpPNPDmp. Attempts to generate DmpPNPPh3 in situ for
reaction with benzaldehyde also failed. Exchange of the PMe3
unit in 1a with added PPh3 also proved futile. The PMe3 groups
in 1a and 1b do undergo exchange with certain non-hindered
trialkylphosphines in solution. For example, 1a and 1b react
quickly with PBu3 to produce mixtures of 1a, PMe3 and
DmpPNPBu3 [1c, 31P NMR(C6D6), d 24.1, 2151.3 (JPP 589
Hz)] and mixtures of 1b, PMe3 and Mes*PNPBu3 [1d, 31P
NMR(C6D6), d 19.9, 2153.7 (JPP 612 Hz)], respectively.13,14
Compound 1c can also be generated in situ (as above) from
PBu3 and DmpPCl2, which in the presence of benzaldehyde
yields the phosphaalkene DmpPNC(H)Ph and ONPBu3 in good
yields. Work-up, however, requires more effort than the PMe3
system due to the decreased volatility of PBu3.
124–126 °C; 1H NMR(C6D6), d 7.97 (d, 2JHP 25.1 Hz, 1 H), 7.63 (s, 2 H),
7.13 (m, 2 H), 6.96 (d, JHH 8.6 Hz, 2 H), 1.57 (s, 18 H), 1.35 (s, 9 H); HRMS
(EI) m/z calc. for C25H34PCl 400.2089; found 400.2086. 4a: mp
131–132 °C; 1H NMR(C6D6), d 8.67 (d, 2JHP 24.9 Hz, 1 H), 7.40 (d, JHH 8.6
Hz, 2 H), 7.20 (t, JHH 7.7 Hz, 1 H), 6.96 (d, JHH 7.7 Hz, 2 H), 6.80 (s, 4 H),
6.70 (m, 2 H), 2.14 (s, 12 H), 2.08 (s, 6 H); HRMS (EI) m/z calc. for
C
31H30PNO2 479.2016; found 479.2028. 4b: mp 129–131 °C; 1H
NMR(C6D6), d 7.83 (d, 2JHP 24.8 Hz, 1 H), 7.73 (d, JHH 8.8 Hz, 2 H), 7.62
(s, 2 H), 7.01 (m, 2 H), 1.52 (s, 18 H), 1.35 (s, 9 H); HRMS (EI) m/z calc.
for C25H34PNO2 411.2329; found 411.2329. 5a: mp 121–122 °C; 1H
NMR(C6D6), d 9.00 (d, 2JHP 24.9 Hz, 1 H), 7.22 (t, JHH 7.6 Hz, 1 H), 7.11
(m, 2 H), 7.02 (d, JHH 7.6 Hz, 2 H), 6.81 (s, 4 H), 6.34 (d, JHH 8.6 Hz, 2 H),
3.04 (s, 3 H), 2.23 (s, 12 H), 2.09 (s, 6 H); HRMS (EI) m/z calc. for
C32H33PO 464.2271; found 464.2260. 5b: mp 164–166 °C; 1H (C6D6): d
8.20 (d, 2JHP 25.1 Hz, 1 H), 7.66 (d, 4JHP 1 Hz, 2 H), 7.41 (m, 2 H), 6.44 (d,
JHH 8.4 Hz, 2 H), 3.20 (s, 3 H), 1.64 (s, 18 H), 1.37 (s, 9 H); HRMS (EI) m/z
calc. for C26H37PO 396.2584; found 396.2584. 6a: mp 181–183 °C; 1H
NMR (C6D6): d 9.06 (d, 2JHP 24.4 Hz, 1 H), 7.22 (m, 3 H), 7.04 (d, JHH 7.6
Hz, 2 H), 6.82 (s, 4 H), 6.09 (d, JHH 8.8 Hz, 2 H), 2.27 (s, 12 H), 2.22 (s, 6
H), 2.10 (s, 6 H); HRMS (EI) m/z calc. for C33H36PN 477.2588; found
477.2596. 7a: mp 159–161 °C; 1H NMR (C6D6), d 8.73 (d, 2JHP 24.9 Hz, 1
H), 7.21 (t, JHH 7.7 Hz, 1 H), 6.97 (d, JHH 7.4 Hz, 2 H), 6.82 (s, 4 H), 2.19
(s, 12 H), 2.06 (s, 6 H); HRMS (EI) m/z calc. for C31H26PF5 524.1694;
found 524.1704. 7b: mp 130–133 °C; 1H NMR (C6D6), d 7.94 (d, 2JHP 24.8
Hz, 1 H), 7.63 (d, JHP 1.0 Hz, 2 H), 1.58 (s, 18 H), 1.32 (s, 9 H); HRMS (EI)
m/z calc. for C25H30PF5 456.2007; found 456.2010. 8a: mp 104–106 °C; 1H
(C6D6), d 8.77 (d, 2JHP 24.2 Hz, 1 H), 7.20 (t, JHH 7.7 Hz, 1 H), 6.96 (d, JHH
8.1 Hz, 2 H), 6.84 (s, 4 H), 4.15 (m, 2 H), 3.89 (m, 2 H), 3.73 (d, J 0.5 Hz,
5 H), 2.21 (s, 12 H), 2.14 (s, 6 H); HRMS (EI) m/z calc. for C35H35PFe
542.1817; found 542.1837. 9a: mp 127–129 °C; 1H NMR (C6D6), d 8.37 (d,
2JHP 25.1 Hz, 1 H), 7.18 (t, JHH 7.6 Hz, 1 H), 6.97 (d, JHH 8.1 Hz, 2 H), 6.83
(s, 4 H), 2.16 (s, 12 H), 2.15 (s, 6 H), 0.79 (d, 4JHH 1.9 Hz, 9 H); HRMS (EI)
m/z calc. for C29H35P 414.2479; found 414.2474.
In conclusion, we have demonstrated that readily prepared
and isolable phosphoranylidenephosphines are apt phosphini-
dene carriers in phospha-Wittig reactions. Our procedure
represents a significant advance for the synthesis of phosphaalk-
enes as it utilizes dichlorophosphines directly, rather than
derived primary phosphines. High yields and functional group
tolerance are further highlights of this phospha-Wittig ap-
proach. Further studies of the phosphinidene and atom transfer
reactions of these conveniently prepared phosphinidene-carriers
are underway.
1 M. Yoshifuji, I. Shima, N. Inamoto, K. Hirotsu and T. Higuchi, J. Am.
Chem. Soc., 1981, 103, 4587.
2 L. Weber, Chem. Rev., 1992, 92, 1839.
3 E. Urnezius, S. Shah, G. P. Yap and J. D. Protasiewicz, manuscript in
preparation.
4 In, Multiple Bonds and Low Coordination in Phosphorus Chemistry, ed.
M. Regitz and O. J. Schere, Thieme Verlag, Stuttgart, 1990.
5 D. G. Gilheany, Chem. Rev., 1994, 94, 1339; P. V. Sudhakar and K.
Lammertsma, J. Am. Chem. Soc., 1991, 113, 1899.
6 T. L. Breen and D. W. Stephan, J. Am. Chem. Soc., 1995, 117, 11 914;
Organometallics, 1996, 15, 4223; 1997, 16, 365.
7 C. C. Cummins, R. R. Schrock and W. M. Davis, Angew. Chem., Int. Ed.
Engl., 1993, 32, 756.
8 P. Le Floch, A. Marinetti, L. Ricard and F. Mathey, J. Am. Chem. Soc.,
1990, 112, 2407; P. Le Floch and F. Mathey, Synlett., 1990, 171; P.
Floch and F. Mathey, Synlett., 1991, 743.
9 E. Urnezius and J. D. Protasiewicz, Main Group Chem., 1996, 1, 369.
10 M. Yoshifuji, K. Toyota and N. Inamoto, Tetrahedron Lett., 1985, 26,
1727.
11 A. H. Cowley, N. C. Norman and M. Pakulski, Inorg. Synth., 1990, 27,
235.
12 C. N. Smit, T. A. van der Knaap and F. Bickelhaupt, Tetrahedron Lett.,
1983, 24, 2031.
13 A. B. Burg, and W. Mahler, J. Am. Chem. Soc., 1961, 83, 2388.
14 A. H. Cowley and M. C. Cushner, Inorg. Chem., 1980, 19, 515.
15 K. Issleib, H. Schmidt and E. Leibring, Z. Chem., 1986, 26, 406.
We thank the National Science Foundation (CHE-9733412)
and the Department of Chemistry (CWRU) for support of this
research.
Notes and References
† E-mail: jdp5@po.cwru.edu
‡ Compound 1a: 1H NMR(C6D6), d 7.08 (t, 1 H, JHH 8 Hz), 6.96 (d, 2 H,
J
HH 8 Hz), 6.90 (s, 4 H), 2.37 (s, 12 H), 2.22 (s, 6 H), 0.58 (dd, 9 H, 2JHP
3
12 Hz, JHPP 3 Hz). HRMS (EI) m/z calc. for C27H34P2 420.2138; found
420.2127. Compound 1a has also been structurally characterized.3 Com-
pound 1b: 1H NMR(C6D6), d 7.42 (s, 2 H), 1.90 (s, 18 H), 1.36 (s, 9 H), 0.69
(d, 9 H, 2JHP 11.5 Hz). HRMS (EI) m/z calc. for C21H38P2 352.2451; found
352.2446.
1
§ Other data for phosphaalkenes: 2a: mp 162–164 °C; H NMR(C6D6), d
9.00 (d, 2JHP 25.0 Hz, 1 H), 7.21 (t, JHH 8.0 Hz, 1 H), 7.16 (m, 2 H), 7.00
(d, JHH 7.6 Hz, 2 H), 6.78 (s, 4 H), 6.73 (m, 1 H), 2.20 (s, 12 H), 2.07 (s, 6
H); HRMS (EI) m/z calc. for C31H31P 434.2165; found 434.2141. 2b: mp
149–152 °C (lit. 152–153 °C10); 1H NMR (C6D6), d 8.19 (d, 2JHP 25.4 Hz,
1 H), 7.64 (d, 4JHP 1.2 Hz, 2 H), 7.46 (m, 2 H), 7.00 (m, 3 H), 1.60 (s, 18
Received in Bloomington, IN, USA; 14th April 1998; 8/02722F
1586
Chem. Commun., 1998