U. Majumder, J. D. Rainier / Tetrahedron Letters 46 (2005) 7209–7211
7211
Table 4.
Rachlin for help in obtaining mass spectra. The authors
would also like to thank Professor Ilya Zharov for his
help with calculations.
OBn
H
H
R
R
O
O
OBn
OBn
OBn
H
TiCl4, Zn,PbCl2,
CH2Br2, THF,
O
H
OBn
H
H
H
R
O
OBn
OBn
H
H
C
Supplementary data
O
TMEDA, CH2Cl2
O
H
OBn
65˚C
Experimental procedures and spectroscopic data for all
new compounds. Supplementary data associated with
this article can be found, in the online version, at
OBn
O
H
H
A
Entry
Ester
R
Enol ether(s)
Yield (%)a
C:Ab
1
2
22
23
CH3
t-Bu
24
25
84
70
1:2.8
>95:5
References and notes
a Isolated yields after chromatography.
b From the crude 1H NMR of the reaction mixture.
1. Deiters, A.; Martin, S. F. Chem. Rev. 2004, 104,
2199.
2. (a) Fujimura, O.; Fu, G. C.; Grubbs, R. H. J. Org. Chem.
1994, 59, 4029; (b) Clark, J. S.; Kettle, J. G. Tetrahedron
Lett. 1997, 38, 123; (c) Clark, J. S.; Kettle, J. G.
Tetrahedron Lett. 1997, 38, 127; (d) Postema, M. H. D.
J. Org. Chem. 1999, 64, 1770; (e) Clark, J. S.; Hamelin, O.
Angew. Chem., Int. Ed. 2000, 39, 372; (f) Chatterjee, A. K.;
Morgan, J. P.; Scholl, M.; Grubbs, R. H. J. Am. Chem.
Soc. 2000, 122, 3783; (g) Postema, M. H. D.; Calimente,
D.; Liu, L.; Behrmann, T. J. Org. Chem. 2000, 65, 6061;
(h) Rainier, J. D.; Cox, J. M.; Allwein, S. P. Tetrahedron
Lett. 2001, 42, 179; (i) Liu, L.; Postema, M. H. D. J. Am.
Chem. Soc. 2001, 123, 8602.
3. (a) Stille, J. R.; Grubbs, R. H. J. Am. Chem. Soc. 1986,
108, 855; (b) Stille, J. R.; Santarsiero, B. D.; Grubbs, R. H.
J. Org. Chem. 1990, 55, 843.
4. Fu, G. C.; Grubbs, R. H. J. Am. Chem. Soc. 1993, 115,
3800.
Table 5.
OTBDPS
H
H
R
R
O
O
O
Si(t-Bu)2
O
OTBDPS
TiCl4, Zn,PbCl2,
CH2Br2, THF,
O
CH3
H
H
H
R
O
O
C
Si(t-Bu)2
OTBDPS
TMEDA, CH2Cl2
O
O
H
H
O
65˚C
O
CH3
H
Si(t-Bu)2
O
O
CH3
H
A
Entry
Ester
R
Enol
ether(s)
Yield
(%)a
C:Ab
1
2
26
27
CH2OTBDMS
28
77
1.3:1
5. (a) Nicolaou, K. C.; Postema, M. H. D.; Claiborne, C. F.
J. Am. Chem. Soc. 1996, 118, 1565; (b) Nicolaou, K. C.;
Postema, M. H. D.; Yue, E. W.; Nadin, A. J. Am. Chem.
Soc. 1996, 118, 10335.
O
H
29
66c
>95:5
O
6. Takai, K.; Kakiuchi, T.; Kataoka, Y.; Utimoto, K. J. Org.
Chem. 1994, 59, 2668.
a Isolated yields after chromatography.
b From the crude 1H NMR of the reaction mixture.
7. Cox, J. M.; Rainier, J. D. Org. Lett. 2001, 3, 2919.
8. We recently reported the use of the Takai–Utimoto
reagent in olefinic-ester cyclizations to generate oxepenes.
See: Johnson, H. W. B.; Majumder, U.; Rainier, J. D.
J. Am. Chem. Soc. 2003, 125, 11893.
c 26% recovered 27.
In summary, we have shown that olefinic-ester cycliza-
tion reactions using the Takai–Utimoto reagent proto-
col are dependent upon the steric environment about
both the ester and olefin. These observations are consis-
tent with the olefin metathesis, carbonyl-olefination
reaction mechanism that was proposed previously. We
are continuing to explore these reactions including their
use in total synthesis problems.
9. Allwein, S. P.; Cox, J. M.; Howard, B. E.; Johnson, H. W.
B.; Rainier, J. D. Tetrahedron 2002, 58, 1997.
10. Available from the corresponding glycal using an epoxi-
dation/propenyl MgBr coupling sequence. See: (a) Rain-
ier, J. D.; Allwein, S. P. J. Org. Chem. 1998, 63, 5310; (b)
Majumder, U.; Cox, J. M.; Rainier, J. D. Org. Lett. 2003,
5, 913.
11. As an estimation of the steric bulk of the substituents, we
have calculated the relative A-values of dimethyldioxolane
and isopropyl substituted cyclohexanes using GaussianÒ
03W version 6.0 (Dreiding force field). This predicts an
energy difference of 1.1 kcal/mol thus accounting for the
observed reactivity. Gaussian 03, Revision A.1, Gaussian,
Pittsburgh, PA, 2003.
Acknowledgments
We are grateful to the National Institutes of Health,
General Medical Sciences (GM56677) for support of
this work. We would like to thank Dr. Charles Mayne
for help with NMR experiments and Dr. Elliot M.
12. Available from the corresponding glycal using an epoxi-
dation/triallylborane coupling sequence. See: Rainier, J.
D.; Cox, J. M. Org. Lett. 2000, 2, 2707.