ORGANIC
LETTERS
1999
Vol. 1, No. 10
1517-1519
Efficient Synthesis of 2-Deoxy L-Ribose
from L-Arabinose: Mechanistic
Information on the 1,2-Acyloxy Shift in
Alkyl Radicals
Michael E. Jung* and Yue Xu
Department of Chemistry and Biochemistry, UniVersity of California,
Los Angeles, California 90095-1569
Received July 20, 1999
ABSTRACT
Conversion of the inexpensive L-arabinose 1 into the ethylthio ortho ester 7 followed by generation of the dialkoxyalkyl radical III produces
the desired 2-deoxy-L-ribose triester 4 in excellent overall yield. It has been shown that the similar dialkoxyalkyl radical IV is not an intermediate
in the 1,2-acyloxy shift of anomeric radical I.
L-Nucleosides and their analogues have become useful agents
for the treatment of viral diseases due in part to their good
antiviral activity and generally low toxicity.1 Either normal
(L-RNA) or 2′-deoxy (L-DNA) L-nucleosides may also be
of value in antisense oligonucleotide therapy as materials to
bind pieces of D-m-RNA.2 For these reasons, new methods
for the preparation of L-nucleoside analogues and the
carbohydrates from which they are derived are an important
synthetic goal. We recently reported an efficient synthesis
of L-ribose and 2-deoxy L-ribose from D-ribose and a fast
preparation of the latter from L-arabinose3 as well as a
conceptually different approach to prepare 2-deoxy L-ribose
from penta-1,4-dien-3-ol.4 We have reexamined the first
approach and report herein a very efficient synthesis of
2-deoxy L-ribose which uses a radical rearrangement of an
unusual cyclic monothio ortho ester.5,6 We also offer
experimental evidence that the 1,2-acyloxy shift in alkyl
radicals, first reported by Surzur7 and Tanner,8 and used
extensively in carbohydrates by Giese,9 does not proceed via
a cyclic dialkoxyalkyl radical.
(4) Jung, M. E.; Nichols, C. J. Tetrahedron Lett. 1998, 39, 4615.
(5) For syntheses of L-ribose, see: (a) Matteson, D. S.; L., P. M. J. Org.
Chem. 1987, 52, 5116. (b) Wulff, G.; Hansen, A. Carbohydr. Res. 1987,
164, 123. (c) Austin, W. C.; Humoller, F. L. J. Am. Chem. Soc. 1932, 54,
4749. (d) Acton, E. M.; Ryan, K., J.; Goodman, L. J. Am. Chem. Soc. 1964,
86, 5352. (e) Abe, Y.; Takizawa, T.; Kunieda, T. Chem. Pharm. Bull. 1980,
28, 1324. (f)Visser, G. M.; van Westrenen, J.; van Boeckel, C. A. A.; van
Boom, J. H. Recl. TraV. Chim. Pays-Bas 1986, 105, 528. (g) Batch, A.;
Czernecki, S. J. Carbohydr. Chem. 1994, 13, 935. (h) Chelain, E.; Floch,
O.; Czernecki, S. J. Carbohydr. Chem. 1995, 14, 1251. (i) Fischer, E.; Piloty,
O. Chem. Ber. 1891, 24, 521. (j) Mori, K.; Kikuchi, H. Liebigs Ann. Chem.
1989, 1267.
(6) Walker, T. E.; Hogenkamp, H. P. C. Carbohydr. Res. 1974, 32, 413.
(7) Surzur, J. M.; Teissier, P. C. R. Hebd. Seances Acad. Sci., Ser. C
1967, 264, 1981. Surzur, J.-M.; Teissier, P. C. R. Bull. Soc. Chim. Fr. 1970,
3060.
(8) Tanner, D. D.; Law, F. C. P. J. Am. Chem. Soc. 1969, 91, 7535.
(9) Giese, B.; Gilges, S.; Gro¨ninger, K. S.; Lamberth, C.; Witzel, T.
Liebigs Ann. Chem. 1988, 615.
(1) For leading references, see: (a) Okabe, M.; Sun, R.-C.; Tam, S. Y.-
K.; Todaro, L. J.; Coffen, D. L. J. Org. Chem. 1988, 53, 4780. (b) Schinazi,
R. F.; Gosselin, G.; Faraj, A.; Korba, B. E.; Liotta, D. C.; Chu, C. K.;
Mathe´, C.; Imbach, J.-L.; Sommadossi, J.-P. Antimicrob. Agents Chemother.
1994, 38, 2172. (c) Chu, C. K.; Ma, T.; Shanmuganathan, K.; Wang, C.;
Xiang, Y.; Pai, S. B.; Yao, G.-Q.; Sommadossi, J.-P.; Cheng, Y.-C.
Antimicrob. Agents Chemother. 1995, 39, 979. (d) Lin, T.-S.; Luo, M.-Z.;
Liu, M.-C.; Pai, B.; Dutschman, G. E.; Cheng, Y.-C. J. Med. Chem. 1994,
37, 798 and the references listed in refs 3 and 4.
(2) For leading references, see the following. (a) L-DNA: Damha, M.
J.; Giannaris, P. A.; Marfey, P. Biochemistry 1994, 33, 7877. Hashimoto,
Y.; Iwanami, N.; Fujimori, S.; Shudo, K. J. Am. Chem. Soc. 1993, 115,
9883. Fujimori, S.; Shudo, K.; Hashimoto, Y. J. Am. Chem. Soc. 1990,
112, 7436. (b) L-RNA: Ashley, G. W. J. Am. Chem. Soc. 1992, 114, 9731.
(3) Jung, M. E.; Xu, Y. Tetrahedron Lett. 1997, 38, 4199.
10.1021/ol990838v CCC: $18.00 © 1999 American Chemical Society
Published on Web 10/06/1999