Published on Web 10/08/2003
Cascade Cyclizations and Couplings Involving Nickel
Enolates
Gireesh M. Mahandru, Andy R. L. Skauge, Sanjoy K. Chowdhury,
Kande K. D. Amarasinghe, Mary Jane Heeg,† and John Montgomery*
Contribution from the Department of Chemistry, Wayne State UniVersity,
Detroit, Michigan 48202-3489
Received July 21, 2003; E-mail: jwm@chem.wayne.edu
Abstract: A new strategy for effecting cascade cyclization processes using nickel enolates has been
developed. Nickel enolates may be cleanly generated by the oxidative cyclization of an enal and alkyne
with Ni(0), and the resulting enolate may be functionalized by a variety of alkylation processes. Partially
and fully intramolecular versions of the process allow the rapid synthesis of complex polycyclics from simple
achiral, acyclic precursors.
Introduction
jugate addition entries to transition metal enolates have allowed
notable progress toward this goal,4 we envisioned that polyun-
Cascade metal-catalyzed cyclization processes have emerged
as enormously useful methods for assembling complex poly-
cyclic molecules from simple polyunsaturated precursors.1 The
iterative migratory insertion of various unsaturated groups into
a reactive metal-carbon bond is often an important theme, and
processes of this type may be coupled with carbonylation,
transmetalation, and reductive elimination in well-timed se-
quences typically controlled by selective placement of reactive
groups within a cyclization precursor.2 Palladium-catalyzed
methods involving the insertion of alkynes and 1,1-disubstituted
alkenes, typically termed Heck cyclizations, have been very
widely explored because the insertions proceed efficiently and
involve σ-alkyl species that are not prone to reaction termination
by â-hydride elimination.1,2
Transition metal enolates have been well documented in many
contexts, and their modes of reactivity are diverse.3 Their
preparation typically involves carbonyl enolization followed by
addition to a metal electrophile,3 addition of metal anions to
R-halocarbonyls,3a conjugate additions or reductions of R,â-
unsaturated carbonyls,4 and isomerization of allylic alcohols.5
Simple electrophilic alkylations and aldol additions,3a,g,4 aryla-
tions and alkenylations,6 and â-hydride elimination7 are among
the many reactivity trends that are often seen for transition metal
enolates. The diverse reactivity of transition metal enolates, if
coupled with the complexity generation allowed by cascade
cyclizations, would provide a powerful new strategy for complex
molecule construction. Although conjugate reduction and con-
saturated precursors could potentially provide access to very
complex processes that involve the formation and alkylation of
transition metal enolates as only two of numerous individual
steps in elaborate metal-promoted polycyclizations. Herein, we
describe our results toward this general goal.
Results and Discussion
Our interest in the chemistry of nickel enolates stems from
our recent work in the development of nickel-catalyzed cy-
(3) (a) Burkhardt, E. R.; Bergman, R. G.; Heathcock, C. H. Organometallics
1990, 9, 30 and references therein. (b) Doney, J. J.; Bergman, R. G.;
Heathcock, C. H. J. Am. Chem. Soc. 1985, 107, 3724. (c) Burkhardt, E.
R.; Doney, J. J.; Bergman, R. G.; Heathcock, C. H. J. Am. Chem. Soc.
1987, 109, 2022. (d) Heathcock, C. H.; Doney, J. J.; Bergman, R. G. Pure
Appl. Chem. 1985, 57, 1789. (e) Slough, G. A.; Bergman, R. G.; Heathcock,
C. H. J. Am. Chem. Soc. 1989, 111, 938. (f) Hartwig, J. F.; Andersen, R.
A.; Bergman, R. G. J. Am. Chem. Soc. 1990, 112, 5670. (g) Campora, J.;
Maya, C. M.; Palma, P.; Carmona, E.; Gutie´rrez-Puebla, E.; Ruiz, C. J.
Am. Chem. Soc. 2003, 125, 1482. (h) Fujii, A.; Hagiwara, E.; Sodeoka, M.
J. Am. Chem. Soc. 1999, 121, 5450. (i) Ito, Y.; Nakatsuka, M.; Kise, N.;
Saegusa, T. Tetrahedron Lett. 1980, 21, 2873. (j) Balegroune, F.; Grandjean,
D.; Lakkis, D.; Matt, D. J. Chem. Soc., Chem. Commun. 1992, 1084. (k)
Murahashi, T.; Kurosawa, H. J. Organomet. Chem. 1999, 574, 142. (l)
Albe´niz, A. C.; Catalina, N. M.; Espinet, P.; Redo´n, R. Organometallics
1999, 18, 5571. (m) Zuideveld, M. A.; Kamer, P. C. J.; van Leeuwen, P.
W. N. M.; Klusener, P. A. A.; Stil, H. A.; Roobeek, C. F. J. Am. Chem.
Soc. 1998, 120, 7977. (n) Pagenkopf, B. L.; Kru¨ger, J.; Stojanovic, A.;
Carreira, E. M. Angew. Chem., Int. Ed. 1998, 37, 3124.
(4) (a) Zhao, C.-X.; Duffey, M. O.; Taylor, S. J.; Morken, J. P. Org. Lett.
2001, 3, 1829. (b) Taylor, S. J.; Duffey, M. O.; Morken, J. P. J. Am. Chem.
Soc. 2000, 122, 4528. (c) Taylor, S. J.; Morken, J. P. J. Am. Chem. Soc.
1999, 121, 12202. (d) Yoshida, K.; Ogasawara, M.; Hayashi, T. J. Am.
Chem. Soc. 2002, 124, 10984. (e) Hayashi, T.; Takahashi, M.; Takaya, Y.;
Ogasawara, M. J. Am. Chem. Soc. 2002, 124, 5052. (f) Lipshutz, B. H.;
Papa, P. Angew. Chem., Int. Ed. 2002, 41, 4580. (g) Huddleston, R. R.;
Krische, M. J. Synlett 2003, 12. (h) Cauble, D. F.; Gipson, J. D.; Krische,
M. J. J. Am. Chem. Soc. 2003, 125, 1110. (i) Wang, L.-C.; Jang, H.-Y.;
Roh, Y.; Lynch, V.; Schultz, A. J.; Wang, X.; Krische, M. J. J. Am. Chem.
Soc. 2002, 124, 9448. (j) Jang, H.-Y.; Huddleston, R. R.; Krische, M. J. J.
Am. Chem. Soc. 2002, 124, 15156. (k) Huddleston, R. R.; Krische, M. J.
Org. Lett. 2003, 5, 1143.
† To whom corresondence regarding X-ray crystallographic determina-
tions should be addressed.
(1) (a) Link, J. T. In Organic Reactions; Overman, L. E., Ed.; Wiley: New
York, 2002; Vol. 60, p 157. (b) Poli, G.; Giambastiani, G.; Heumann, A.
Tetrahedron 2000, 56, 5959.
(2) (a) Trost, B. M.; Shi, Y. J. Am. Chem. Soc. 1993, 115, 9421. (b) Overman,
L. E. Pure Appl. Chem. 1994, 66, 1423. (c) Sugihara, T.; Coperet, C.;
Owczarczyk, Z.; Harring, L. S.; Negishi, E. J. Am. Chem. Soc. 1994, 116,
7923. (d) Negishi, E. Pure Appl. Chem. 1992, 64, 323. (e) Brown, S.;
Clarkson, S.; Grigg, R.; Thomas, W. A.; Sridharan, V.; Wilson, D. M.
Tetrahedron 2001, 57, 1347.
(5) (a) Motherwell, W. B.; Sandham, D. A. Tetrahedron Lett. 1992, 33, 6187.
(b) Uma, R.; Cre´visy, C.; Gre´e, R. Chem. ReV. 2003, 103, 27.
(6) (a) Culkin, D. A.; Hartwig, J. F. Acc. Chem. Res. 2003, 36, 234. (b) Moradi,
W. A.; Buchwald, S. L. J. Am. Chem. Soc. 2001, 123, 7996. (c) Sole´, D.;
Diaba, F.; Bonjoch, J. J. Org. Chem. 2003, 68, 5746.
(7) Ito, Y.; Hirao, T.; Saegusa, T. J. Org. Chem. 1978, 43, 1011.
9
10.1021/ja037423w CCC: $25.00 © 2003 American Chemical Society
J. AM. CHEM. SOC. 2003, 125, 13481-13485
13481