ꢁꢀꢀꢀ
S. Ebrahimi et al.: New selective and efficient acylating reagentsꢃ ꢃ9
in vacuo and purified by column chromatography on Acknowledgments: We appreciate financial support
silica gel to afford the pure product (compounds 2a–p and of Shahreza Branch, Islamic Azad University (IAUSH)
3a–q).
Research Council.
4.2.2 General procedure for the acylation of diamines,
amino alcohols, and amino phenols
References
[1] T. W. Greene, P. G. M. Wuts, Protective Groups in Organic Syn-
thesis, 3rd ed., Wiley, New York, 1999, p. 150.
[2] S. M. Hosseini, H. Sharghi, Tetrahedron 2005, 61, 10903.
[3] R. J. Kalbasi, A. R. Massah, Z. Barkhordari, Bull. Korean Chem.
Soc. 2010, 31, 2361.
A mixture of the acylating reagents 1a–e (0.5 mmol),
diamines or amino alcohol (0.5 mmol), and K2CO3 (1 mmol
for diamines and 3 mmol for amino alcohol or amino
phenol) was stirred in H2O (1–2 mL) at 80 °C for the appro-
priate period of time. The progress of the reaction was
monitored by TLC. Upon completion of the reaction, the
solvent of the mixture was evaporated. Then, acetone
(10 mL) was added and K2CO3 was filtered off and washed
with additional solvent (20 mL). After evaporation of the
solvent, the crude product was purified by column chro-
matography on silica gel to afford the pure products (com-
pounds 4a–f and 5a–g).
[4] G. Brahmachari, S. Laskar, S. Sarkar, J. Chem. Res. 2010, 34,
288.
[5] T. Kunieda, T. Higuchi, Y. Abe, M. Hirobe, Tetrahedron Lett.
1982, 23, 1159.
[6] H. Ueno, L. J. Benjamin, M. A. Pospischil, J. M. Manning,
Biochemistry 1987, 26, 3120.
[7] S. Murahashi, T. Naota, E. Saito, J. Am. Chem. Soc. 1986, 108,
7846.
[8] Y. Kikugawa, K. Mitsui, T. Sakamoto, M. Kawase, H. Tamiya,
Tetrahedron Lett. 1990, 31, 243.
[9] A. R. Katritzky, H. X. Chang, B. Yang, Synthesis 1995, 62, 503.
[10] M. C. O’Sullivan, D. M. Dalrymple, Tetrahedron Lett. 1995, 36,
3451.
[11] D. Xu, K. Prasad, O. Repic, T. J. Blacklock, Tetrahedron Lett.
1995, 36, 7357.
[12] R. S. Atkinson, E. Barker, M. J. Sutcliffe, Chem. Commun. 1996,
382, 1051.
4.3 Spectral data of new amides from
diamines
4.3.1 N-(2-(Phenylamino)ethyl)benzamide (5b)
[13] A. R. Katritzky, B. Yang, D. Semenzin, J. Org. Chem. 1997, 62,
726.
M.p. 124–128 °C. – Rf (film): ν ꢀ=ꢀ 3375, 3027, 1630 (Cꢀ=ꢀO),
1
1600, 1576, 1524, 1326, 1132, 741, 712, 691 cm−1. – H NMR [14] K. Kondo, E. Sekimoto, J. Nakao, Y. Murakami, Tetrahedron
(400 MHz, CDCl3): δ ꢀ=ꢀ 3.42 (t, J ꢀ=ꢀ 6.0 Hz, 2 H, CH210), 3.70–
2000, 56, 5843.
[15] M. Poliakoff, P. Anastas, Nature 2001, 413, 257.
11
3.76 (m, 3 H, CH2 , NH), 6.66–6.72 (m, 3 H, Ar-H9, NHCO),
[16] S. Y. Tang, R. A. Bourne, R. L. Smith, M. Poliakoff, Green Chem.
6.76 (t, J ꢀ=ꢀ 7.6 Hz, 1 H, Ar-H8), 7.21 (t, J ꢀ=ꢀ 7.6 Hz, 2 H, Ar-H5),
2008, 10, 268.
7.43 (t, J ꢀ=ꢀ 7.6 Hz, 2 H, Ar-H6), 7.52 (t, J ꢀ=ꢀ 7.6 Hz, 1 H, Ar-H4),
[17] C. J. Li, T. H. Chan, Organic Reactions in Aqueous Media, Wiley,
7.78 (d, J ꢀ=ꢀ 7.2 Hz, 2 H, Ar-H7). – 13C NMR (100 MHz, CDCl3):
New York, 1997.
[18] P. Grieco, Organic Synthesis in Water, Thomson Science,
Glasgow, 1998.
δ ꢀ=ꢀ 39.7 (C–NHCO), 44.0 (C–NH), 112.9 (C-9), 117.8 (C-8),
126.9 (C-7), 128.6 (C-6), 129.4 (C-5), 131.6 (C-4), 134.2 (C-3),
147.8 (C-2), 168.2 (Cꢀ=ꢀO).
[19] I. T. Horvath, Green Chem. 2008, 10, 1024.
[20] A. R. Massah, S. Sayadi, S. Ebrahimi, R.S.C. Advances 2012, 2,
6606.
[21] A. R. Massah, D. Azadi, H. Aliyan, A. R. Momeni, H. Javaherian
Nagash, F. Kazemi, Monatsh. Chem. 2008, 139, 233.
[22] A. R. Massah, M. Dabagh, Sh. Shahidi, H. Javaherian Nagash,
A. R. Momeni, H. Aliyan, J. Iran Chem. Soc. 2009, 6, 405.
[23] A. R. Massah, B. Asadi, M. Hoseinpour, A. Molseghi, R. J.
Kalbasi, H. Javaherian Nagash, Tetrahedron 2009, 65, 7696.
[24] A. R. Massah, F. Kazemi, D. Azadi, S. Farzaneh, H. Aliyan,
H. Javaherian Nagash, A. R. Momeni, Lett. Org. Chem. 2006,
3, 103.
4.3.2 N-(2-(Phenylamino)ethyl)pentanamide (5c)
M.p. 109–112 °C. – Rf (film): ν ꢀ=ꢀ 3401, 2929, 1647 (Cꢀ=ꢀO),
1
1603, 1647, 1512, 1259, 749, 692 cm−1. – H NMR (400 MHz,
CDCl3): δ ꢀ=ꢀ 0.93 (t, J ꢀ=ꢀ 7.6 Hz, 3 H, CH3), 1.36 (sext, J ꢀ=ꢀ
7.6 Hz, 2 H, CH210), 1.63 (quint, J ꢀ=ꢀ 7.6 Hz, 2 H, CH29), 2.20 (t,
8
6
J ꢀ=ꢀ 7.2 Hz, 2 H, CH2 ), 3.30 (t, J ꢀ=ꢀ 7.2 Hz, 2 H, CH2 ), 3.51–3.57
7
[25] B. T. Gowda, K. M. Usha, K. L. Jayalakshmi, Z. Naturforsch.
2003, 58a, 801.
(m, 3 H, CH2 , NH), 5.88 (brs, 1 H, NHCO), 6.66 (d, J ꢀ=ꢀ 7.6,
2 H, Ar-H5), 6.75 (t, J ꢀ=ꢀ 7.6 Hz, 1 H, Ar-H4), 7.21 (t, J ꢀ=ꢀ 7.6 Hz,
2 H, Ar-H3). – 13C NMR (100 MHz, CDCl3): δ ꢀ=ꢀ 13.8 (C-11), 22.4
(C-10), 27.8 (C-9), 36.5 (C-8), 39.0 (C–NHCO), 44.2 (C–NH),
112.8 (C-5), 117.8 (C-4), 129.3 (C-3), 147.8 (C-2), 174.0 (Cꢀ=ꢀO).
[26] G. R. Newkome, X. Yuanjiao, Heterocycles 1983, 206, 981.
[27] S. R. Thopate, S. R. Kote, S. V. Rohokale, N. M. Thorat, J. Chem.
Res. 2011, 35, 124.
[28] J. G. Cannon, J. Am. Pharm. Assoc. 1953, 42, 740.
Brought to you by | University of California
Authenticated
Download Date | 1/2/16 7:43 PM