Table 1 Tm values of 5A-amino-2A,4A-BNA modified oligonucleotides with
5A-Amino-2A,4A-BNA modified oligonucleotide 15 was read-
ily cleaved under mild acidic condtions, while the correspond-
ing natural (22) and 2A,4A-BNA modified (23) oligonucleotides
were quite stable under the same conditions (ESI†).
complementary DNA and RNAa
Tm (DTm/modification)/°C
In conclusion, the synthesis of 5A-amino-2A,4A-BNA monomer
and its modified oligonucleotides was successfully accom-
plished. The modified oligonucleotides showed great properties
of hybridization to ssDNA, ssRNA and dsDNA, along with
resistance to enzymatic degradation. We also confirmed that 5A-
amino-2A,4A-BNA modified oligonucleotide can be cleaved
under mild acidic condtions. These properties of 5A-amino-2A,4A-
BNA modified oligonucleotides would be useful not only for
antisense/antigene applications but also for many novel technol-
ogies in the post-genome-sequencing era.
Part of this work was supported by a Grant for Research on
Health Sciences focusing on Drug Innovation from The Japan
Health Sciences Foundation, Industrial Technology Research
Grant Program in ’00 from the New Energy and Industrial
Technology Development Organization (NEDO) of Japan, a
Grant-in-Aid from the Japan Society for the Promotion of
Science, and a Grant-in-Aid from the Ministry of Education,
Science, and Culture, Japan.
Oligonucleotide
DNA
RNA
5A-GCGTTTTTTGCT-3A
47
45
5A-GCGTTTTTTGCT-3A(9)
5A-GCGTTTTTTGCT-3A(10)
5A-GCGTTTTTTGCT-3A(11)
5A-GCGTTtTTTGCT-3A(16)
5A-GCGTTtTtTGCT-3A(17)
5A-GCGtTtTtTGCT-3A(18)
52 (+5)
52 (+3)
53 (+2)
53 (+6)
54 (+4)
56 (+3)
50 (+5)
54 (+5)
58 (+4)
52 (+7)
57 (+6)
62 (+6)
a UV melting profiles measured in 10 mM sodium phosphate buffer (pH
7.2) containing 100 mM NaCl at a scan rate of 0.5 °C min21 at 260 nm. The
concentration of oligonucleotide used was 4 mM for each strand. The
sequence of target DNA or RNA complements is 5A-AGCAAAAAACGC-
3A. T: 5A-amino-2A,4A-BNA with thymine. t: 2A,4A-BNA with thymine.
values per modification of 12–14 were over 7 °C higher than
those of the natural oligonucleotide.
Table 2 Tm values of 5A-amino-2A,4A-BNA modified oligonucleotides with
dsDNAa
Tm (DTm/modification)/°C
Notes and references
‡ The coupling yields for attachment of amidite 8, determined by a trityl
monitor, were > 94%. The synthesized oligonucleotides were purified by
reversed-phase HPLC, and the compositions were determined by MALDI-
TOF-MS: 9 [M 2 H]2 3659.50 (calc. 3659.45); 10 [M 2 H]2 3686.56
(calc. 3686.47); 11 [M 2 H]2 3713.70 (calc. 3713.50); 12 [M 2 H]2
4523.63 (calc. 4523.09); 13 [M 2 H]2 4550.33 (calc. 4550.11); 14 [M 2
H]2 4577.95 (calc. 4577.14); 15 [M 2 H]2 3006.37 (calc. 3006.08).
Oligonucleotide
2MgCl2
+10 mM MgCl2
5A-TTTTTmCTTTmCTmCTmCT-3A
32
42
5A-TTTTTmCTTTmCTmCTmCT-3A (12)
5A-TTTTTmCTTTmCTmCTmCT-3A (13)
5A-TTTTTmCTTTmCTmCTmCT-3A (14)
5A-TTTTTmCTtTmCTmCTmCT-3A (19)
5A-TTTTTmCTtTmCtmCTmCT-3A (20)
5A-TTTTtmCTtTmCtmCTmCT-3A (21)
40 (+8)
45 (+7)
52 (+7)
42 (+10)
48 (+8)
56 (+8)
50 (+8)
57 (+8)
64 (+7)
52 (+10)
60 (+9)
70 (+9)
1 E. Uhlmann and A. Peyman, Chem. Rev., 1990, 90, 543.
2 S. L. Beaucageand and R. P. Iyer, Tetrahedron, 1993, 49, 6123.
3 N. T. Thoung and C. Hélène, Angew. Chem., Int. Ed. Engl., 1993, 32,
666.
4 S. O. Doronia and J.-P. Behr, Chem. Soc. Rev., 1997, 63.
5 I. Luyten and P. Herdewijn, Eur. J. Med. Chem., 1998, 33, 515.
6 S. M. Gryaznov, Biochim. Biophys. Acta, 1999, 1489, 131.
7 J.-K. Chen, R. G. Schultz, D. H. Lloyd and S. M. Gryaznov, Nucleic
Acids Res., 1995, 23, 2661.
a UV melting profiles were 7 mM sodium phosphate buffer (pH 7.0)
containing 140 mM KCl at a scan rate of 0.5 °C min21 at 260 nm. The
concentration of oligonucleotide used was 1.5 mM for each strand. The
sequence of target dsDNA is 5A-GCTGCTAAAAAGAAAGAGA-
GATCGTCG-3A/3A-CGACGATTTTTCTTTCTCTCTAGCAGC-5A. T: 5A-
amino-2A,4A-BNA with thymine. t: 2A,4A-BNA with thymine. mC: 2A-deoxy-
5-methylcytidine.
8 R. G. Schultz and S. M. Gryaznov, Nucleic Acids Res., 1996, 24,
2996.
The nuclease-resistance of 5A-amino-2A,4A-BNA modified
oligonucleotide 15 against 3A-exonuclease (snake venom phos-
phodiesterase, SVPDE) was compared with that of natural
oligothymidilate 22 and 2A,4A-BNA modified oligonucleotide 23
(Fig. 2). The degradation of oligonucleotides was analyzed by
reversed-phase HPLC analysis, and was determined by the
percentage of full-length oligonucleotides at several time
points. Although natural oligonucleotide 22 was immediately
digested within 5 min, 50% of 5A-amino-2A,4A-BNA modified
oligonucleotide 15 was unchanged after 40 min (Fig. 2). In
addition, the nuclease-resistance of 5A-amino-2A,4A-BNA mod-
ified oligonucleotide 15 was found to be superior to that of 2A,4A-
BNA oligonucleotide 23.
9 S. M. Gryaznov and H. Winter, Nucleic Acids Res., 1998, 26, 4160.
10 W. Bannwarth, Helv. Chim. Acta, 1988, 71, 1517.
11 M. S. Shchepinov, M. F. Denissenko, K. J. Smylie, R. J. Worl, A. L.
Leppin, C. R. Cantor and C. P. Rodi, Nucleic Acids Res., 2001, 29,
3864.
12 S. M. Gryaznov and R. L. Letsinger, Nucleic Acids Res., 1992, 20,
3403.
13 S. M. Gyraznov, D. H. Lloyd, J.-K. Chen, R. G. Schultz, L. A.
DeDionisio, L. Ratmeyer and W. D. Wilson, Proc. Natl. Acad. Sci. USA,
1995, 92, 5798.
14 V. Tereshko, S. M. Gryaznov and M. Egli, J. Am. Chem. Soc., 1998,
120, 269.
15 D. Barsky, M. E. Colvin, G. Zon and S. M. Gryaznov, Nucleic Acids
Res., 1997, 25, 830.
16 N. K. Banavali and A. D. MacKerell Jr, Nucleic Acids Res., 2001, 29,
3219.
17 S. Obika, D. Nanbu, Y. Hari, K. Morio, Y. In, T. Ishida and T. Imanishi,
Tetrahedron Lett., 1997, 38, 8735.
18 S. Obika, D. Nanbu, Y. Hari, J. Andoh, K. Morio, T. Doi and T.
Imanishi, Tetrahedron Lett., 1998, 39, 5401.
19 T. Imanishi and S. Obika, J. Synth. Org. Chem., Jpn., 1999, 57, 969.
20 T. Imanishi and S. Obika, Chem. Commun., 2002, 1653.
21 S. Obika, Y. Hari, K. Morio and T. Imanishi, Tetrahedron Lett., 2000,
41, 221.
22 S. Obika, Y. Hari, T. Sugimoto, M. Sekiguchi and T. Imanishi,
Tetrahedron Lett., 2000, 41, 8923.
Fig. 2 Enzymatic stability of modified oligonucleotides (5A-TTTTTTTTTX-
3A, X: natural T (22) (open circles), 2A,4A-BNA T (23) (triangles) or 5A-
amino-2A,4A-BNA T (15) (closed circles)) against SVPDE. Hydrolysis of the
oligonucleotides (10 mg) was carried out at 37 °C in a buffer (320 ml)
containing 50 mM Tris-HCl (pH 8.0), 10 mM MgCl2 and SVPDE (0.05
mg).
23 H. Torigoe, Y. Hari, M. Sekiguchi, S. Obika and T. Imanishi, J. Biol.
Chem., 2001, 276, 2354.
24 S. Obika, T. Uneda, T. Sugimoto, D. Nanbu, T. Minami, T. Doi and T.
Imanishi, Bioorg. Med. Chem., 2001, 9, 1001.
25 S. Obika, K. Morio, D. Nanbu, Y. Hari, H. Itoh and T. Imanishi,
Tetrahedron, 2002, 58, 3039.
CHEM. COMMUN., 2003, 2202–2203
2203