M. Dahrouch et al. / Journal of Organometallic Chemistry 562 (1998) 191–195
195
References
min at 60°C. In a way similar to that observed for 2,
addition of CH3NO2 prevented the transformation of 3
into 4. All attempts to recrystallize 3 in nitromethane
failed. In C6H6 or ether, after filtration of excess
cyanamide, crystals of 4 were obtained.
[1] A.S. Gordetsov, V.P. Kozyukov, I.A. Vostokov, S.V. Shellud-
dyakova, Yu. I. Dergunov, V.F. Mironov, Usp. Khim. 51 (1982)
848; Russ. Chem. Rev. 51 (1982) 485.
[2] A. Obermeyer, A. Kienzle, J. Weindlein, R. Riedel, A. Simon, Z.
Anorg. Allg. Chem. 620 (1994) 1357.
[3] A. Kienzle, A. Obermeyer, R. Riedel, F. Aldinger, A. Simon,
Chem. Ber. 126 (1993) 2569.
[4] P. Haag, R. Lechler, J. Weidlein, Z. Anorg. Allg. Chem. 620
(1994) 112.
4.4. Synthesis of bis(trimesitylgermyl)carbodiimide
(4) by transmetallation from lithium cyanamide
[5] T. Pasinszki, T. Veszpremi, M. Feher, J. Mol. Struct.
(THEOCHEM) 331 (1995) 289.
[6] G. Veneziani, R. Reau, G. Bertrand, Organometallics 12 (1993)
4289.
[7] R. Reau, G. Bertrand, Rev. Heteroatom. Chem. 14 (1996) 134.
[8] H. Koehler, R. Menzel, F. Mandl, L. Jaeger, Z. Anorg. Allg.
Chem. 551 (1987) 173.
[9] A.S. Gordetsov, A.P. Kosina, S.E. Skobeleva, A.N. Egorochkin,
Metallorg. Khim. 1 (1988) 107.
[10] G.A. Razuvaev, A.S. Gordetsov, A.P. Kozina, et al., J.
Organometal. Chem. 327 (1987) 303.
[11] V.F. Gerega, Yu. I. Dergunov, A.V. Pavlycheva, Yu. I.
Mushkin, Yu. A. Aleksandrov, Z. Obsch. Khim. 40 (1970) 1099.
[12] R.A. Cardona, E.J. Kupchik, J. Organometal. Chem. 34 (1972)
129; 43 (1972) 163.
[13] J.A. Feiccabrino, E.J. Kupchik, J. Organometal. Chem. 56
(1973) 167.
[14] G. Domazetis, R.J. Magee, B.D. James, J. Organometal. Chem.
148 (1978) 339.
[15] L. Birkofer, A. Riter, P. Richter, Tetrahedron Lett. (1962) 195.
[16] P. Rivie`re, M. Rivie`re-Baudet, J. Satge´, Comprehensive
Organometallic Chemistry, vol. 2, Pergamon Press, Oxford,
1982, p. 399 and 1995, p. 137.
[17] J.E. Drake, R.T. Hemmings, H.E. Henderson, J. Chem. Soc.
Dalton Trans. (1976) 366.
[18] E.A. Ebsworth, M.J. Mays, J. Chem. Soc. (1961) 4879; Spec-
trochimica Acta (1963) 1127.
[19] S. Cradock, E.A. Ebsworth, J. Chem.Soc. A (1968) 1423.
[20] R.A. Forder, G.M. Sheldrick, J. Chem. Soc. Chem. Commun.
(1970) 1023; J. Chem. Soc. A (1971) 1107.
[21] G.M. Sheldrick, R. Taylor, J. Organomet. Chem. 101 (1975) 19.
[22] J.D. Murdoch, D.W.H. Rankin, J. Chem. Soc. Chem. Commun.
(1972) 748.
[23] G.M. Sheldrick, Acta Crystallogr. Sect A 46 (1990) 467.
[24] G.M. Sheldrick, SHELXL-93, Program for Crystal Structure
Refinement, Universita¨t Go¨ttingen, 1997.
Lithium cyanamide prepared as for 1 [H2NCN (0.01
g, 0.32 mmol), t-BuLi: (0.64 mmol)], was added into a
THF solution (3 ml) of Mes3GeCl (0.30 g, (0.64
mmol)]. The reaction mixture was heated at 55°C for 2
h. THF was replaced by benzene and LiCl eliminated
by centrifugation. Evaporation of the solvents under
vacuo led to 0.25 g (75% yield) of a white residue
identified as 4; recrystallization from ether afforded
colorless crystals; m.p.: 237–238°C; Mass spectrum
(DCI, CH4) (M+1)+: 901 (30%), (M+1)+-CH4: 885
(12%), (M+1)+-MesH: 781 (18%); IR (CDCl3): 2158;
(nujol mull): 2179 (was N=C=N) cm−1 1H-NMR
.
(CDCl3, 25°C): 2.08 (s, 36H, o-CH3), 2.23 (s, 18H,
p-CH3), 6.70 (s, 12H, C6H2); 13C-NMR (CDCl3, 25°C):
21.02 (p-CH3), 23.74 (o-CH3), 137.23 (C1), 143.47 (C2),
129.27 (C3), 138.33 (C4), 136.44 (N=C=N).
4.5. Crystal and X-ray experimental data for (4)
The crystal data for 4 are presented in Table 1. The
data were collected on a STOE-IPDS diffractometer
˚
with Mo–Kh (u=0.71073 A) radiation using -scans.
The structure was solved by direct methods using
SHELXS-97 [23] and refined with all data on F2
with a weighting scheme of ꢀ−1=|2(Fo2)+(g1·P)2+
(g2·P) with P=(Fo2 +2F2c)/3 using SHELXL-97.
[24] All non-hydrogen atoms were treated anisotropi-
cally.
.
.