4
Chem., Int. Ed. 2012, 51, 5062; e) Miyaura, N.; Suzuki, A.
Chem. Rev. 1995, 95, 2457.
dihydrides are quite air-sensitive). The precatalyst also requires a
sacrificial alkyne in the same quantity as the catalyst loading to
form the active vinylidene, which limits the overall yield (the
reported yields are not adjusted for the loss of alkyne to form the
vinylidene). Additionally, in many cases it was difficult to isolate
the pure diene products due to contamination by ruthenium
catalyst decomposition side products (difficulties in removal of
metal catalyst decomposition side-products from metathesis
reactions have been reported19), which required careful
chromatography to remove. This was especially problematic with
the more polar dienes (like 39 and 41), and accounts for the
significant differences in the NMR yields and the isolated yields.
Mori and co-workers did have to employ an atmosphere of
ethylene to achieve their higher yields, however, which was not
required for the ruthenium dihydride based catalysts. Attempts to
improve the yield of enyne metathesis for catalyst 10 by
performing the reaction under an ethylene atmosphere did not
result in an improved yield.
4.
5.
a) Trost, B. M. Angew. Chem., Int. Ed. Engl. 1995, 34, 259; b)
Trost, B. M. Science 1991, 254, 1471.
a) Gallenkamp, D.; Fürstner, A. J. Am. Chem. Soc. 2011, 133,
9232; b) Saito, N.; Saito, K.; Shiro, M.; Sato, Y. Org. Lett. 2011,
13, 2718; c) Perez, L. J.; Shimp, H. L.; Micalizio, G. C. J. Org.
Chem. 2009, 74, 7211; d) Neisius, N. M.; Plietker, B. Angew.
Chem., Int. Ed. 2009, 48, 5752; e) Mori, M.; Tanaka, D.; Saito, N.;
Sato, Y. Organometallics 2008, 27, 6313; f) Nishimura, T.;
Washitake, Y.; Uemura, S. Adv. Synth. Catal. 2007, 349, 2563.
a) Fischmeister, C.; Bruneau, C. Beilstein J. Org. Chem. 2011, 7,
156; b) Li, J.; Lee, D. Eur. J. Org. Chem. 2011, 2011, 4269; c)
Diver, S. T. Coord. Chem. Rev. 2007, 251, 671; d) Diver, S. T.
Sci. Synth. 2009, 46, 97; e) Diver, S. T.; Giessert, A. J. Chem. Rev.
2004, 104, 1317.
6.
7.
8.
9.
Clark, J. R.; Diver, S. T. Org. Lett. 2011, 13, 2896.
Grubbs, R. H. Tetrahedron 2004, 60, 7117.
Fu, G. C.; Nguyen, S. T.; Grubbs, R. H. J. Am. Chem. Soc. 1993,
115, 9856.
10.
11.
Hoveyda, A. H. J. Org. Chem. 2014, 79, 4763.
a) Kaminsky, L.; Wilson, R. J.; Clark, D. A. Org. Lett. 2015, 17,
3126; b) Kaminsky, L.; Clark, D. A. Org. Lett. 2014, 16, 5450; c)
Liu, S.; Zhao, J.; Kaminsky, L.; Wilson, R. J.; Marino, N.; Clark,
D. A. Org. Lett. 2014, 16, 4456; d) Zhao, J.; Liu, S.; Marino, N.;
Clark, D. A. Chem. Sci. 2013, 4, 1547; e) Dixon, A. D. C.;
Wilson, R. J.; Nguyen, D. D.; Clark, D. A. Tetrahedron Lett.
2017, 58, 4054.
In summary, a new enyne metathesis catalyst system has been
developed based on a ruthenium dihydride precursor. This
catalyst system has been shown to be active in ring closing enyne
metathesis and was also capable of performing ring closing olefin
metathesis through use of a sacrificial alkyne. Experimental
evidence suggests that ruthenium vinylidene intermediate is the
active catalyst in this reaction. This hypothesis is further
supported by deuterium labeling experiments and olefin
metathesis activity in the presence of a terminal alkyne. This
work demonstrates that ruthenium dihydrides may access a
RCEYM mode of reactivity.
12.
13.
Mori, M.; Sakakibara, N.; Kinoshita, A. J. Org. Chem. 1998, 63,
6082.
a) Hirasawa, D.; Watanabe, Y.; Yamahara, T.; Tanaka, K.; Sato,
K.; Yamagishi, T. Mol. Catal. 2018, 452, 184; b) Ogiwara, Y.;
Miyake, M.; Kochi, T.; Kakiuchi, F. Organometallics 2017, 36,
159; c) Gulias, M.; Collado, A.; Trillo, B.; Lopez, F.; Onate, E.;
Esteruelas, M. A.; Mascarenas, J. L. J. Am. Chem. Soc. 2011, 133,
7660; d) Kitazawa, K.; Kochi, T.; Kakiuchi, F. Org. Synth. 2010,
87, 209; e) Mitsudo, T.; Naruse, H.; Kondo, T.; Ozaki, Y.;
Watanabe, Y. Angew. Chem. 1994, 106, 595; f) Warrener, R. N.;
Abbenante, G.; Kennard, C. H. L. J. Am. Chem. Soc. 1994, 116,
3645; g) Yamaguchi, M.; Kido, Y.; Omata, K.; Hirama, M. Synlett
1995, 1181; h) Wakatsuki, Y.; Yamazaki, H.; Kumegawa, N.;
Satoh, T.; Satoh, J. Y. J. Am. Chem. Soc. 1991, 113, 9604; i)
Mitsudo, T.; Nakagawa, Y.; Watanabe, K.; Hori, Y.; Misawa, H.;
Watanabe, H.; Watanabe, Y. J. Org. Chem. 1985, 50, 565.
Trost, B. M.; Toste, F. D.; Pinkerton, A. B. Chem. Rev. 2001, 101,
2067.
a) Lozano-Vila, A. M.; Monsaert, S.; Bajek, A.; Verpoort, F.
Chem. Rev. 2010, 110, 4865; b) deLosRios, I.; Tenorio, M. J.;
Puerta, M. C.; Valerga, P. J. Am. Chem. Soc. 1997, 119, 6529; c)
Wakatsuki, Y.; Koga, N.; Yamazaki, H.; Morokuma, K. J. Am.
Chem. Soc. 1994, 116, 8105; d) Nolan, S. P.; Belderrain, T. R.;
Grubbs, R. H. Organometallics 1997, 16, 5569.
a) Wolf, J.; Stuer, W.; Grunwald, C.; Gevert, O.; Laubender, M.;
Werner, H. Eur. J. Inorg. Chem. 1998, 1827; b) Belderrain, T. R.;
Grubbs, R. H. Organometallics 1997, 16, 4001; c) Wilhelm, T. E.;
Belderrain, T. R.; Brown, S. N.; Grubbs, R. H. Organometallics
1997, 16, 3867.
Supplementary Material
Supplementary data associated with this article can be found,
in the online version, at (insert web address). This material
includes detailed experimental procedures and NMR data (1H and
13C spectra).
14.
15.
Acknowledgments
Support for the Syracuse University NMR facility was
provided by the National Science Foundation (CHE-1229345).
References and notes
16.
1.
2.
3.
a) The Chemistry of Dienes and Polyenes (Ed.: Rappoport, Z.),
Wiley, Chichester, 1997; b) 1,3-Dienes (Eds.: Rawal, V. H.,
Kozmin, S. A.), Science of Synthesis Vol.46; Georg Thieme
Verlag KG: Stuttgart, 2009; c) K. C. Nicolaou, S. A. Snyder,
Classics in Total Synthesis II: More Targets, Strategies, Wiley-
VCH, Weinheim, 2003; d) Woerly, E. M.; Roy, J.; Burke, M. D.
Nat. Chem. 2014, 6, 484. e) Ananikov, V. P.; Hazipov, O. V.;
Beletskaya, I. P. Chem. Asian J. 2011, 6, 306.
17.
18.
19.
Galan, B. R.; Giessert, A. J.; Keister, J. B.; Diver, S. T. J Am
Chem Soc 2005, 127, 5762.
Grotevendt, A. G. D.; Lummiss, J. A. M.; Mastronardi, M. L.;
Fogg, D. E. J. Am. Chem. Soc. 2011, 133, 15918.
a) Maynard, H. D.; Grubbs, R. H. Tetrahedron Lett. 1999, 40,
4137; b) Paquette, L. A.; Schloss, J. D.; Efremov, I.; Fabris, F.;
Gallou, F.; Mendez-Andino, J.; Yang, J. Org. Lett. 2000, 2, 1259;
c) Ahn, Y. M.; Yang, K.; Georg, G. I. Org. Lett. 2001, 3, 1411; d)
Knight, D. W.; Morgan, I. R.; Proctor, A. J. Tetrahedron Lett.
2010, 51, 638; e) French, J. M.; Caras, C. A.; Diver, S. T. Org.
Lett. 2013, 15, 5416.
a) Handbook of Conducting Polymers, 3rd ed., (Eds.: Skotheim,
T. A., Reynolds, J. R.), CRC Press: Boca Raton, FL, 2007; b)
Facchetti, A. Chem. Mater. 2011, 23, 733-758; c) Xu, S.; Kim, E.
H.; Wei, A.; Negishi, E.-i. Sci. Technol. Adv. Mater. 2014, 15,
44201/1; d) Dini, D.; Calvete, M. J. F.; Hanack, M. Chem. Rev.
2016, 116, 13043; e) Calvete, M. J. F. Int. Rev. Phys. Chem. 2012,
31, 319; f) Cheng, Y.-J.; Yang, S.-H.; Hsu, C.-S. Chem. Rev.
2009, 109, 5868-5923.
a) Metal-Catalyzed Cross-Coupling Reactions (Eds.: A. de
Meijere, F. Diederich), Wiley-VCH, Weinheim, 2004; b) Cross-
Coupling Reactions: A Practical Guide (Ed.: N. Miyaura), Topics
in Current Chemistry, Vol.219, Springer, Heidelberg, 2002; c)
Metal Complexes as Catalysts for C-C Cross-Coupling Reactions,
I. P. Beletskaya, A. V. Cheprakov in Comprehensive Coordination
Chemistry II, Vol. 9 (Eds.: J. A. McCleverty, T. J. Meyer),
Elsevier Ltd., Oxford, 2004, pp. 305–368; d) Johansson Seechurn,
C. C. C.; Kitching, M. O.; Colacot, T. J.; Snieckus, V. Angew.