10.1002/ejoc.202001174
European Journal of Organic Chemistry
COMMUNICATION
partial chlorination of the porphyrins was observed by mass
spectrometry (Figure S22).
Keywords: π-extension • porphyrinoids • fusion reaction • Scholl
oxidation • post-functionalization
Table 1. Reactivity comparison of different aryl substituents at the porphyrin. All
reactions were started at the same day under the same conditions: Nickel
porphyrin (50 µmol, 1 equiv.), FeCl3 (800 µmol, 16. equiv.), CH3NO2 (1 mL),
CH2Cl2 (10 mL), rt. For details see supporting information.
[1]
[2]
[3]
[4]
J. P. Lewtak, D. T. Gryko, Chem. Commun. 2012, 48, 10069-
10086.
H. Mori, T. Tanaka, A. Osuka, J. Mater. Chem. C 2013, 1, 2500-
2519.
M. Stępień, E. Gońka, M. Żyła, N. Sprutta, Chem. Rev. 2017, 117,
3479-3716.
R. B. M. Koehorst, J. F. Kleibeuker, T. J. Schaafsma, D. A. de Bie,
B. Geurtsen, R. N. Henrie, H. C. van der Plas, J. Chem. Soc.,
Perkin Trans. 2 1981, 1005-1009.
[5]
[6]
S. Ito, T. Murashima, N. Ono, H. Uno, Chem. Commun. 1998,
1661-1662.
M. Ruppel, D. Lungerich, S. Sturm, R. Lippert, F. Hampel, N. Jux,
Chem. Eur. J. 2020, 26, 3287-3296.
[7]
[8]
S. Fox, R. W. Boyle, Chem. Commun. 2004, 1322-1323.
D.-M. Shen, C. Liu, Q.-Y. Chen, Chem. Commun. 2005, 4982-
4984.
[9]
D.-M. Shen, C. Liu, Q.-Y. Chen, J. Org. Chem. 2006, 71, 6508-
6511.
[10]
[11]
T. Ishizuka, Y. Saegusa, Y. Shiota, K. Ohtake, K. Yoshizawa, T.
Kojima, Chem. Commun. 2013, 49, 5939-5941.
Y. Saegusa, T. Ishizuka, K. Komamura, S. Shimizu, H. Kotani, N.
Kobayashi, T. Kojima, Phys. Chem. Chem. Phys. 2015, 17, 15001-
15011.
[12]
[13]
[14]
[15]
[16]
H. Yamada, D. Kuzuhara, T. Takahashi, Y. Shimizu, K. Uota, T.
Okujima, H. Uno, N. Ono, Org. Lett. 2008, 10, 2947-2950.
V. Yakutkin, S. Aleshchenkov, S. Chernov, T. Miteva, G. Nelles, A.
Cheprakov, S. Baluschev, Chem. Eur. J. 2008, 14, 9846-9850.
N. K. Davis, A. L. Thompson, H. L. Anderson, Org. Lett. 2010, 12,
2124-2127.
N. K. S. Davis, A. L. Thompson, H. L. Anderson, J. Am. Chem.
Soc. 2011, 133, 30-31.
Q. Chen, L. Brambilla, L. Daukiya, K. S. Mali, S. De Feyter, M.
Tommasini, K. Müllen, A. Narita, Angew. Chem. Int. Ed. 2018, 57,
11233-11237.
L. M. Mateo, Q. Sun, S. X. Liu, J. J. Bergkamp, K. Eimre, C. A.
Pignedoli, P. Ruffieux, S. Decurtins, G. Bottari, R. Fasel, T. Torres,
Angew. Chem. Int. Ed. 2020, 59, 1334-1339.
Y. He, M. Garnica, F. Bischoff, J. Ducke, M.-L. Bocquet, M. Batzill,
W. Auwärter, J. V. Barth, Nat. Chem. 2017, 9, 33-38.
A. Tsuda, A. Osuka, Science 2001, 293, 79-82.
V. V. Diev, K. Hanson, J. D. Zimmerman, S. R. Forrest, M. E.
Thompson, Angew. Chem. Int. Ed. 2010, 49, 5523-5526.
M. Grzybowski, B. Sadowski, H. Butenschon, D. T. Gryko, Angew.
Chem. Int. Ed. 2020, 59, 2998-3027.
J. M. Englert, J. Malig, V. A. Zamolo, A. Hirsch, N. Jux, Chem.
Commun. 2013, 49, 4827-4829.
D. Lungerich, J. F. Hitzenberger, M. Marcia, F. Hampel, T.
Drewello, N. Jux, Angew. Chem. Int. Ed. 2014, 53, 12231-12235.
D. Lungerich, J. F. Hitzenberger, W. Donaubauer, T. Drewello, N.
Jux, Chem. Eur. J. 2016, 22, 16755-16759.
M. M. Martin, N. Jux, J. Porphyrins Phthalocyanines 2018, 22,
454-460.
D. Lungerich, J. F. Hitzenberger, F. Hampel, T. Drewello, N. Jux,
Chem. Eur. J. 2018, 24, 15818-15824.
M. M. Martin, M. Dill, J. Langer, N. Jux, J. Org. Chem. 2019, 84,
1489-1499.
M. M. Martin, D. Lungerich, P. Haines, F. Hampel, N. Jux, Angew.
Chem. Int. Ed. 2019, 58, 8932-8937.
M. M. Martin, D. Lungerich, F. Hampel, J. Langer, T. K. Ronson, N.
Jux, Chem. Eur. J. 2019, 25, 15083-15090.
M. M. Martin, C. Dusold, A. Hirsch, N. Jux, J. Porphyrins
Phthalocyanines 2020, 24, 268-277.
N. Fukui, W.-Y. Cha, S. Lee, S. Tokuji, D. Kim, H. Yorimitsu, A.
Osuka, Angew. Chem. Int. Ed. 2013, 52, 9728-9732.
N. Fukui, S.-K. Lee, K. Kato, D. Shimizu, T. Tanaka, S. Lee, H.
Yorimitsu, D. Kim, A. Osuka, Chem. Sci. 2016, 7, 4059-4066.
A plane that was defined by the position of the four nitrogen atoms
was calculated for each porphyrin. The distance between the
porphyrin cores was determined by the distance between two
calculated planes.
To conclude, the successful preparation of π-extended porphyrins
by a fusion reaction of the aryl substituents to the porphyrin cores
was presented. Standard FeCl3 mediated Scholl conditions have
proven to be suitable for the fusion of 3,5-di-tert-butylphenyl as
well as 3-tert-butylphenyl substituents to the respective porphyrin
core. Chlorination, which is a typical side reaction, only occurred
for the control group, the mesityl substituted porphyrin 8 that
cannot undergo a fusion reaction.
Finally, we like to emphasize the advantage of the herein
presented concept: With our protocol, simple A4-symmetric
porphyrins, which can be easily prepared in decent yields and
quantities, can be transformed to newly π-extended dyes using
well-established reaction conditions. Due to this simplicity and the
reliance on standard reactions, we think that this concept has a
great potential for the preparation and application of exciting new
dye materials. Additionally, this protocol is suitable for the late
stage modification of many already existing porphyrin arrays. For
example, the absorption characteristics of porphyrin-based light
absorbing arrays might be improved and therefore higher
efficiencies of photovoltaic devices could be achieved.[34-36] The
only limiting factor is that the substituents and functional groups
attached to the porphyrin must be tolerant to Scholl conditions. To
fully reveal the potential of this concept, fusing aryl substituents to
porphyrins by Scholl reactions are currently under further
investigation in our group.
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]
[32]
[33]
Acknowledgements
[34]
[35]
H. Shinya, M. Yusuke, E. Seunghun, H. Hironobu, U. Tomokazu,
M. Yoshihiro, I. Hiroshi, Chem. Lett. 2008, 37, 846-847.
S. Hayashi, M. Tanaka, H. Hayashi, S. Eu, T. Umeyama, Y.
Matano, Y. Araki, H. Imahori, J. Phys. Chem. C 2008, 112, 15576-
15585.
Funded by the Deutsche Forschungsgemeinschaft (DFG) –
Projektnummer 182849149 – SFB 953. M.M.M. thanks the Fonds
der Chemischen Industrie (FCI) and the Graduate School
Molecular Science (GSMS) for financial support.
[36]
Y. Kurumisawa, T. Higashino, S. Nimura, Y. Tsuji, H. Iiyama, H.
Imahori, J. Am. Chem. Soc. 2019, 141, 9910-9919.
4
This article is protected by copyright. All rights reserved.