ACS Medicinal Chemistry Letters
Page 6 of 7
Funding for this work came from the following sources:
12. Ostrem, J. M. L.; Shokat, K. M. Direct SmallꢀMolecule
Inhibitors of KRAS: From Structural Insights to Mechanismꢀ
Based Design. Nat. Rev. Drug Discovery 2016, 15 (11), 771–785.
13. Wilson, C. Y.; Tolias, P. Recent Advances in Cancer Drug
Discovery Targeting RAS. Drug Discovery Today 2016, 21 (12),
1915–1919.
U. S. National Institutes of Health, NIH Director’s Pioneer Award
(DP1OD006933/DP1CA174419) to S. W. Fesik
Lustgarten Foundation Research Investigator Grant to S. W. Fesik
National Cancer Institute SPORE Grant in GI Cancer
(5P50A095103ꢀ09) to R. J. Coffey
1
2
3
4
5
6
7
8
14. Burns, M. C.; Sun, Q.; Daniels, R. N.; Camper, D.; Kennedy,
J. P.; Phan, J.; Olejniczak, E. T.; Lee, T.; Waterson, A. G.;
Rossanese, O. W.; Fesik, S. W. Approach for Targeting Ras With
Small Molecules That Activate SOSꢀMediated Nucleotide
Exchange. Proc. Natl. Acad. Sci. U.S.A. 2014, 111 (9), 3401–
3406.
15. Howes, J. E.; Akan, D. T.; Burns, M. C.; Rossanese, O. W.;
Waterson, A. G.; Fesik, S. W. Small MoleculeꢀMediated
Activation of RAS Elicits Biphasic Modulation of PhosphoꢀERK
Levels That Are Regulated Through Negative Feedback on SOS1.
Mol. Cancer Ther. 2018, 17 (5), 1051–1060.
16. Abbott, J. R.; Hodges, T. R.; Daniels, R. N.; Patel, P. A.;
Kennedy, J. P.; Howes, J. E.; Akan, D. T.; Burns, M. C.; Sai, J.;
Sobolik, T.; Beesetty, Y.; Lee, T.; Rossanese, O. W.; Phan, J.;
Waterson, A. G.; Fesik, S. W. Discovery of Aminopiperidine
Indoles That Activate the Guanine Nucleotide Exchange Factor
SOS1 and Modulate RAS Signaling. J. Med. Chem. 2018, 61 (14),
6002–6017.
17. Burns, M. C.; Howes, J. E.; Sun, Q.; Little, A. J.; Camper, D.
V.; Abbott, J. R.; Phan, J.; Lee, T.; Waterson, A. G.; Rossanese,
O. W.; Fesik, S. W. HighꢀThroughput Screening Identifies Small
Molecules That Bind to the RAS:SOS:RAS Complex and Perturb
RAS Signaling. Anal. Biochem. 2018, 548, 44–52.
18. Winter, J. J. G.; Anderson, M.; Blades, K.; Brassington, C.;
Breeze, A. L.; Chresta, C.; Embrey, K.; Fairley, G.; Faulder, P.;
Finlay, M. R. V.; Kettle, J. G.; Nowak, T.; Overman, R.; Patel, S.
J.; Perkins, P.; Spadola, L.; Tart, J.; Tucker, J. A.; Wrigley, G.
Small Molecule Binding Sites on the Ras:SOS Complex Can Be
Exploited for Inhibition of Ras Activation. J. Med. Chem. 2015,
58 (5), 2265–2274.
19. Lovering, F.; Bikker, J.; Humblet, C. Escape from Flatland:
Increasing Saturation as an Approach to Improving Clinical
Success. J. Med. Chem. 2009, 52 (21), 6752–6756.
20. Smith, G. F. Designing Drugs to Avoid Toxicity. In Prog.
Med. Chem.; Lawton, G.; Witty, D. R., Eds.; Elsevier: 2011; Vol.
50, pp 1–47.
21. Peterson, L. A. Reactive Metabolites in the Biotransformation
of Molecules Containing a Furan Ring. Chem. Res. Toxicol. 2013,
26 (1), 6–25.
Notes
RAS activator compounds have been licensed to Boehringer
Ingelheim.
ACKNOWLEDGMENT
The authors would like to thank the following core facilities for
their contributions to this work:
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Experiments were performed in the Vanderbilt High Throughput
Screening (HTS) Core Facility with assistance provided by C.
David Weaver, Paige Vinson, Chris Farmer, and Corbin Whitꢀ
well. The HTS Core receives support from the Vanderbilt Institute
of Chemical Biology and the Vanderbilt Ingram Cancer Center
(P30 CA68485).
The Vanderbilt University Biomolecular NMR Facility for inꢀ
strumentation. This facility receives support from an NIH SIG
Grant (1Sꢀ10RR025677ꢀ01) and Vanderbilt University matching
funds.
The U.S. Department of Energy, Office of Science, Office of
Basic Energy Sciences for use of the Advanced Photon Source
(Contract: DEꢀAC02ꢀ06CH11357).
ABBREVIATIONS
EGF, epidermal growth factor; ERK1/2, extracellular regulated
kinases 1 and 2; GAP, GTPaseꢀactivating protein; GEF, guanine
nucleotide exchange factor; EC50, half maximal effective concenꢀ
tration; HTS, high throughput screen/screening; MAPK, mitogenꢀ
activated protein kinase; pERK1/2, phosphorylated ERK1/2;
SOS1, son of sevenless homologue 1
REFERENCES
1. Papke, B.; Der, C. J. Drugging RAS: Know the Enemy.
Science 2017, 355 (6330), 1158–1163.
2. Prior, I. A.; Lewis, P. D.; Mattos, C. A Comprehensive Survey
of Ras Mutations in Cancer. Cancer Res. 2012, 72 (10), 2457–
2467.
3. Cox, A. D.; Fesik, S. W.; Kimmelman, A. C.; Luo, J.; Der, C.
J. Drugging the Undruggable RAS: Mission Possible? Nat. Rev.
Drug Discovery 2014, 13 (11), 828–851.
4. Pulgar, T. G. D.; Lacal, J. C. GTPase. In Encyclopedia of
Cancer; Schwab, M., Ed.; Springer Berlin Heidelberg: Berlin,
Heidelberg, 2011; pp 1609–1613.
5. Cox, A. D.; Der, C. J. Ras History. Small GTPases 2010, 1 (1),
2–27.
6. Vigil, D.; Cherfils, J.; Rossman, K. L.; Der, C. J. Ras
Superfamily GEFs and GAPs: Validated and Tractable Targets for
Cancer Therapy? Nat. Rev. Cancer 2010, 10 (12), 842–857.
7. Hanahan, D.; Weinberg, R. A. The Hallmarks of Cancer. Cell
2000, 100 (1), 57–70.
8. Hanahan, D.; Weinberg, R. A. Hallmarks of Cancer: The Next
Generation. Cell 2011, 144 (5), 646–674.
9. PylayevaꢀGupta, Y.; Grabocka, E.; BarꢀSagi, D. RAS
Oncogenes: Weaving a Tumorigenic Web. Nat. Rev. Cancer
2011, 11 (11), 761–774.
10. Sacco, E.; Spinelli, M.; Vanoni, M. Approaches to Ras
Signaling Modulation and Treatment of RasꢀDependent
Disorders: A Patent Review (2007–Present). Expert Opin. Ther.
Pat. 2012, 22 (11), 1263–1287.
11. Singh, H.; Longo, D. L.; Chabner, B. A. Improving Prospects
for Targeting RAS. J. Clin. Oncol. 2015, 33 (31), 3650–3659.
22. Burns, M. C. Small Molecule Modulation of the RasꢀSOS
Interaction in Cancer. Dissertation, Vanderbilt University,
Nashville, TN, 2014.
23. Gilli, G.; Gilli, P. Towards an Unified HydrogenꢀBond
Theory. J. Mol. Struct. 2000, 552 (1), 1–15.
24. MeotꢀNer, M. The Ionic Hydrogen Bond. Chem. Rev. 2005,
105 (1), 213–284.
25. Gilli, P.; Gilli, G. Hydrogen Bond Models and Theories: The
Dual Hydrogen Bond Model and Its Consequences. J. Mol. Struct.
2010, 972 (1), 2–10.
6
ACS Paragon Plus Environment