NJC
chemicals from biomass, Nat. Rev. Chem., 2018, 2, 35–46;
Paper
H. Sohn, J. Camacho-Bunqin, D. Yang, C. Y. Park,
M. Delferro and M. M. Abu-Omar, Deoxydehydration of
Biomass-Derived Polyols with a Reusable Unsupported
Rhenium Nanoparticles Catalyst, ACS Sustainable Chem.
Eng., 2019, 7, 11438–11447; (d) T. Wang, M. Tamura,
Y. Nakagawa and K. Tomishige, Preparation of Highly Active
Monometallic Rhenium Catalysts for Selective Synthesis of
1,4-Butanediol from 1,4-Anhydroerythritol, ChemSusChem,
2019, 12, 3615–3626; (e) Y. Nakagawa, S. Tazawa, T. Wang,
M. Tamura, N. Hiyoshi, K. Okumura and K. Tomishige,
Mechanistic Study of Hydrogen-Driven Deoxydehydration
over Ceria-Supported Rhenium Catalyst Promoted by Au
Nanopartic, ACS Catal., 2018, 8, 584–595; ( f ) W. Tianmiao,
L. Sibao, T. Masazumi, N. Yoshinao, H. Norihito and T. Keichi,
One-pot catalytic selective synthesis of 1,4-butanediol from
1,4-anhydroerythritol and hydrogen, Green Chem., 2018, 20,
2547–2557; (g) Y. Kon, M. Araque, T. Nakashima, S. Paul,
F. Dumeignil and B. Katryniok, Direct Conversion of Glycerol
to Allyl Alcohol Over Alumina-Supported Rhenium Oxide,
ChemistrySelect, 2017, 2, 9864–9868; (h) S. Tazawa, N. Ota,
M. Tamura, Y. Nakagawa, K. Okumura and K. Tomishige,
Deoxydehydration with Molecular Hydrogen over Ceria-
Supported Rhenium Catalyst with Gold Promoter, ACS
Catal., 2016, 6, 6393–6397; (i) A. L. Denning, H. Dang,
Z. Liu, K. M. Nicholas and F. C. Jenthoft, Deoxydehydration
of Glycols Catalyzed by Carbon-Supported Perrhenate,
ChemCatChem, 2013, 5, 3567–3570.
8 (a) L. J. Donnelly, S. P. Thomas and J. B. Love, Recent
Advances in the Deoxydehydration of Vicinal Diols and
Polyols, Chem. – Asian J., 2019, 14, 3782–3790; (b) A. R.
Peterson and P. Fristrup, New Motifs in Deoxydehydration:
Beyond the Realms of Rhenium, Chem. – Eur. J., 2017, 23,
10235–10243; (c) G. Chapman Jr. and K. M. Nicholas,
Vanadium-catalyzed deoxydehydration of glycols, Chem.
Commun., 2013, 49, 8199–8201; (d) T. V. Gopaldasu and
K. M. Nicholas, Carbon Monoxide (CO) – and Hydrogen-
Driven, Vanadium-Catalyzed Deoxydehydration of Glycols,
ACS Catal., 2016, 6, 1901–1904; (e) K. M. Kwok, C. K. S.
Choong, D. S. W. Ong, J. C. Q. Ng, C. G. Gwei, L. Chen and
A. Borgna, Hydrogen-Free Gas-Phase Deoxydehydration of
2,3-Butanediol to Butene on Silica-Supported Vanadium
Catalysts, ChemCatChem, 2017, 9, 2443–2447.
(b) S. Shylesh, A. A. Gokhale, C. R. Ho and A. T. Bell, Novel
Strategies for the Production of Fuels, Lubricants, and Che-
micals from Biomass, Acc. Chem. Res., 2017, 50, 2589–2597;
(c) L. Wu, T. Moteki, A. A. Gokhale, D. W. Flaherty and
F. D. Toste, Production of Fuels and Chemicals from Biomass:
Condensation Reactions and Beyond, Chem, 2016, 1, 32–58;
(d) P. Lanzafame, G. Centi and S. Perathoner, Catalysis for
biomass and CO2 use through solar energy: opening new
scenarios for a sustainable and low-carbon chemical produc-
tion, Chem. Soc. Rev., 2014, 43, 7562–7580; (e) P. Gallezot,
Conversion of biomass to selected chemical products, Chem.
Soc. Rev., 2012, 41, 1538–1558; ( f ) J. J. Bozell and G. R.
Peterson, Technology development for the production of
biobased products from biorefinery carbohydrates-the US
Department of Energy’s Top 10 revisited, Green Chem., 2010,
12, 539–554; (g) D. M. Alonso, J. Q. Bond and J. A. Dumesic,
Catalytic conversion of biomass to biofuels, Green Chem., 2010,
12, 1493–1513; (h) D. R. Dodds and R. A. Gross, Chemicals from
Biomass, Science, 2007, 318, 1250–1251.
2 J. C. Serrano-Ruiz, R. M. West and J. A. Dumesic, Catalytic
Conversion of Renewable Biomass Resources to Fuels and
Chemicals, Annu. Rev. Chem. Biomol. Eng., 2010, 79–100.
3 (a) B. Wozniak, Y. Li, S. Tin and J. G. deVries, Rhenium-
catalyzed deoxydehydration of renewable triols derived from
sugars, Green Chem., 2018, 20, 4433–4437; (b) S. Liu, J. Yi
and M. M. Abu-Omar, Deoxydehydration (DODH) of
Biomass-Derived Molecules, in Reaction Pathways and
Mechanisms in Thermocatalytic Biomass Conversion II, ed.
M. Schlaf and Z. Zhang, Green Chemistry and Sustainable
Technology, Springer, Singapore, 2016, 1–11; (c) C. Boucher-
Jacobs and K. M. Nicholas, Deoxydehydration of polyols,
Top. Curr. Chem., 2014, 353, 163–184.
4 K. A. DeNike and S. M. Kilyanek, Deoxydehydration of
vicinal diols by homogeneous catalysts: a mechanistic over-
view, R. Soc. Open Sci., 2019, 6, 191165.
5 (a) D. S. Morris, K. van Rees, M. Curcio, M. Cokoja,
F. E. Kuhn, F. Duarte and J. B. Love, Deoxydehydration of
vicinal diols and polyols catalyzed by pyridinium perrhenate
salts, Catal. Sci. Technol., 2017, 7, 5644–5649; (b) S. Raju,
M.-E. Moret and R. J. M. K. Gebbink, Rhenium-Catalyzed
Dehydration and Deoxydehydration of Alcohols and Polyols:
Opportunities for the Formation of Olefins from Biomass,
ACS Catal., 2015, 5, 281–300.
6 G. K. Cook and M. K. Andrews, Toward Nonoxidative Routes
to Oxygenated Organics: Stereospecific Deoxydehydration of
Diols and Polyols to Alkenes and Allylic Alcohols Catalyzed
by the Metal Oxo Complex (C5Me5)ReO3, J. Am. Chem. Soc.,
1996, 118, 9448–9449.
7 (a) J. Cao, M. Tamura, Y. Nakagawa and K. Tomishige,
Direct Synthesis of Unsaturated Sugars from Methyl Glyco-
sides, ACS Catal., 2019, 9, 3725–3729; (b) J. Lin, H. Song,
X. Shen, B. Wang, S. Xie, W. Deng, D. Wu, Q. Zhang and
Y. Wang, Zirconia-supported rhenium oxide as an efficient
catalyst for the synthesis of biomass-based adipic acid ester,
Chem. Commun., 2019, 55, 11017–11020; (c) J. H. Jang,
9 (a) L. Hills, R. Moyano, F. Montilla, A. Pastor, A. Galindo,
E. Alvarez, F. Marchetti and C. Pettinari, Dioxomolybdenum(VI)
Complexes with Acylpyrazolonate Ligands: Synthesis,
Structures, and Catalytic Properties, Eur. J. Inorg. Chem.,
2013, 3352–3361; (b) J. R. Dethlefsen, D. Lupp, B.-C. Oh and
P. Fristrup, Molybdenum-Catalyzed Deoxydehydration of
Vicinal Diols, ChemSusChem, 2014, 7, 425–428; (c) J. R.
Dethlefsen, D. Lupp, A. Teshome, L. B. Nielsen and
P. Fristrup, Molybdenum-Catalyzed Conversion of Diols
and Biomass-Derived Polyols to Alkenes Using Isopropyl
Alcohol as Reductant and Solvent, ACS Catal., 2015, 5,
3638–3647; (d) K. Beckerle, A. Sauer, T. P. Spaniol and
J. Okuda, Bis(phenolato)molybdenum complexes as catalyst
precursors for the deoxydehydration of biomass-derived
New J. Chem.
This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020