Organic Letters
Letter
Chem. Commun. 2012, 48, 10514. (c) Zheng, J.; Chevance, S.; Darcel,
Mountain, C. E.; Simpson, A.; Stevens, D. R.; Urquhart, M. W. J.;
Wade, C. E.; Warren, J.; Wooster, N. F.; Zilliox, A. Org. Process Res.
Dev. 2012, 16, 1607.
́
C.; Sortais, J.-B. Chem. Commun. 2013, 49, 10010. (d) Bezier, D.;
Park, S.; Brookhart, M. Org. Lett. 2013, 15, 496.
(26) Bio, M. M.; Hansen, K. B.; Gipson, J. Org. Process Res. Dev.
2008, 12, 892.
(27) Birch, A. M.; Kemmit, P. D. World Patent WO 2007/071966,
Jun 28, 2007.
(28) Elmore, C. S.; Bragg, R. A. Bioorg. Med. Chem. Lett. 2015, 25,
167.
(29) Simmons, E. M.; Hartwig, J. F. Angew. Chem., Int. Ed. 2012, 51,
(7) (a) Zhang, M.; Li, N.; Tao, X.; Ruzi, R.; Yu, S.; Zhu, C. Chem.
Commun. 2017, 53, 10228. (b) Stache, E. E.; Ertel, A. B.; Rovis, T.;
Doyle, A. G. ACS Catal. 2018, 8, 11134.
(8) Iosub, A. V.; Wallentin, C.-J.; Bergman, J. Nature Catalysis 2018,
1, 645.
(9) Magano, J.; Dunetz, J. R. Org. Process Res. Dev. 2012, 16, 1156.
(10) (a) Nagayama, K.; Kawataka, F.; Sakamoto, M.; Shinizu, I.;
Yamamoto, A. Chem. Lett. 1995, 24, 367. (b) Nagayama, K.; Shimizu,
I.; Yamamoto, A. Chem. Lett. 1998, 27, 1143. (c) Nagayama, K.;
Shimizu, I.; Yamamoto, A. Bull. Chem. Soc. Jpn. 2001, 74, 1803.
(11) (a) Gooßen, L. J.; Khan, B. A.; Fett, T.; Treu, M. Adv. Synth.
Catal. 2010, 352, 2166. (b) Gooßen, L. J.; Ghosh, K. Chem. Commun.
2002, 836. (c) Fujihara, T.; Cong, C.; Terao, J.; Tsuji, Y. Adv. Synth.
Catal. 2013, 355, 3420.
(12) (a) Bercot, E. A.; Rovis, T. J. Am. Chem. Soc. 2002, 124, 174.
(b) O’Brien, E. M.; Bercot, E. A.; Rovis, T. J. Am. Chem. Soc. 2003,
125, 10498. (c) Kajita, Y.; Kurahashi, T.; Matsubara, S. J. Am. Chem.
Soc. 2008, 130, 17226. (d) Ochi, Y.; Kurahashi, T.; Matsubara, S. Org.
Lett. 2011, 13, 1374.
(13) (a) Yin, H.; Zhao, C.; You, H.; Lin, K.; Gong, H. Chem.
Commun. 2012, 48, 7034. (b) Zhao, C.; Jia, X.; Wang, X.; Gong, H. J.
Am. Chem. Soc. 2014, 136, 17645. (c) Lin, T.; Mi, J.; Song, L.; Gan, J.;
Luo, P.; Mao, J.; Walsh, P. J. Org. Lett. 2018, 20, 1191. (d) He, J.;
Song, P.; Xu, X.; Zhu, S.; Wang, Y. ACS Catal. 2019, 9, 3253.
(14) (a) Le, C. C.; MacMillan, D. W. C. J. Am. Chem. Soc. 2015, 137,
11938. (b) Joe, C. L.; Doyle, A. G. Angew. Chem., Int. Ed. 2016, 55,
4040. (c) Amani, J.; Molander, G. A. Org. Lett. 2017, 19, 3612.
(d) Stache, E. E.; Rovis, T.; Doyle, A. G. Angew. Chem., Int. Ed. 2017,
56, 3679. (e) Badir, S. O.; Dumoulin, A.; Matsui, J. K.; Molander, G.
A. Angew. Chem., Int. Ed. 2018, 57, 6610.
(15) (a) Qin, T.; Malins, L. R.; Edwards, J. T.; Merchant, R. R.;
Novak, A. J. E.; Zhong, J. Z.; Mills, R. B.; Yan, M.; Yuan, C.; Eastgate,
M. D.; Baran, P. S. Angew. Chem., Int. Ed. 2017, 56, 260. (b) Simmons,
B. J.; Hoffmann, M.; Hwang, J.; Jackl, M. K.; Garg, N. K. Org. Lett.
2017, 19, 1910.
3066.
(30) Schmidt, C. Nat. Biotechnol. 2017, 35, 493.
(31) Zhang, M.; Yuan, X.-A.; Zhu, C.; Xie, J. Angew. Chem., Int. Ed.
2019, 58, 312.
̈
(32) Brown, D. G.; Bostrom, J. J. Med. Chem. 2016, 59, 4443.
(33) Subjecting the preformed mixed anhydride 6 to the reaction
details.
(34) For oxidative addition studies of Ni0 to O−CO anhydride
bonds, see: (a) Trost, B. M.; Chen, F. Tetrahedron Lett. 1971, 12,
̈
2603. (b) Fischer, R.; Walther, D.; Kempe, R.; Sieler, J.; Schonecker,
B. J. Organomet. Chem. 1993, 447, 131. (c) Johnson, J. B.; Bercot, E.
A.; Rowley, J. M.; Coates, G. W.; Rovis, T. J. Am. Chem. Soc. 2007,
129, 2718.
(35) Reduction of Ni(II) to Ni(0) with Zn was previously shown to
be slow: Everson, D. A.; Jones, B. A.; Weix, D. J. J. Am. Chem. Soc.
2012, 134, 6146.
(36) The exact nature of this step is unknown. One possibility is
transmetalation with highly reactive ate complexes formed by direct
reaction of methoxide anions and the silane. For formation of these
ate complexes, see: Revunova, K.; Nikonov, G. I. Chem. - Eur. J. 2014,
20, 839.
(37) Guo, L.; Srimontree, W.; Zhu, C.; Maity, B.; Liu, X.; Cavallo,
L.; Rueping, M. Nat. Commun. 2019, 10, 1957.
(38) (a) Chakraborty, S.; Krause, J. A.; Guan, H. Organometallics
2009, 28, 582. (b) Tran, B. L.; Pink, M.; Mindiola, D. J.
Organometallics 2009, 28, 2234. (c) Bheeter, L. P.; Henrion, M.;
Brelot, L.; Darcel, C.; Chetcuti, M. J.; Sortais, J.-B.; Ritleng, V. Adv.
Synth. Catal. 2012, 354, 2619. (d) Zheng, J.; Darcel, C.; Sortais, J.-B.
Catal. Sci. Technol. 2013, 3, 81.
(16) (a) Sweeney, J. B.; Ball, A. K.; Smith, L. J. Chem. - Eur. J. 2018,
24, 7354. (b) Sweeney, J. B.; Ball, A. K.; Lawrence, P. A.; Sinclair, M.
C.; Smith, L. J. Angew. Chem., Int. Ed. 2018, 57, 10202. (c) Xia, A.;
Xie, X.; Chen, H.; Zhao, J.; Zhang, C.; Liu, Y. Org. Lett. 2018, 20,
7735.
(17) DMDC was also used with Pd catalysis for activation of acids:
(a) Kakino, R.; Narahashi, H.; Shimizu, I.; Yamamoto, A. Bull. Chem.
Soc. Jpn. 2002, 75, 1333. (b) Gooßen, L. J.; Winkel, L.; Doehring, A.;
Ghosh, K.; Paetzold, J. Synlett 2002, 1237. (c) Si, S.; Wang, C.;
Zhang, N.; Zou, G. J. Org. Chem. 2016, 81, 4364.
(18) DMDC was also used for activation of aromatic acids for
photoredox catalysis. See ref 7a and: Bergonzini, G.; Cassani, C.;
Wallentin, C.-J. Angew. Chem., Int. Ed. 2015, 54, 14066.
(20) For additional successful and less successful substrates tested,
(21) Fujioka, H.; Okitsu, T.; Sawama, Y.; Murata, N.; Li, R.; Kita, Y.
J. Am. Chem. Soc. 2006, 128, 5930.
(22) Celli, C. J. L.; Plattier, M.; Teisseire, P. J. US Patent 3,981,891,
Sep 21, 1976.
(23) Recovery of acid 1z, rather than its anhydride, was observed in
the crude reaction 1H NMR. Preliminary experiments also suggest the
acid anhydride of 1z may be inactive under catalytic conditions. See
electron-deficient carboxylic acids tested, see Chart S1.
(24) Crawford, J. B.; Chen, G.; Gauthier, D.; Wilson, T.; Carpenter,
B.; Baird, I. R.; McEachern, E.; Kaller, A.; Harwig, C.; Atsma, B.;
Skerlj, R. T.; Bridger, G. J. Org. Process Res. Dev. 2008, 12, 823.
(25) No aldehyde yield was reported, as the aldehyde was used
directly in a subsequent transformation: Britton, H.; Catterick, D.;
Dwyer, A. N.; Gordon, A. H.; Leach, S. G.; McCormick, C.;
E
Org. Lett. XXXX, XXX, XXX−XXX