4 × OAc), 4.03 (m, 1H, CH2), 4.16 (m, 1H, CH2), 4.30 (m,
12 G. Springsteen and G. F. Joyce, J. Am. Chem. Soc., 2004, 126, 9578–
9583.
13 G. Zubay, Origins Life Evol. Biosphere, 1998, 28, 13–26.
14 A. L. Weber, J. Mol. Evol., 1992, 35, 1–6.
2H, CH2), 5.24 (m, 1H, CH), 5.30 (m, 1H, CH). Anal. chiral GC
◦
(240 C, 106 KPa, 1.35 mL min−1): tR = 90.7 (meso-erythritol
tetraacetate), tR = 109.6 (D-threitol tetraacetate), tR = 113.8
15 A. Ricardo, M. A. Carrigan, A. N. Olcott and S. A. Benner, Science,
2004, 303, 196.
16 (a) D. Mu¨ller, S. Pitsch, A. Kittaka, E. Wagner, C. E. Wintner
and A. Eschenmoser, Helv. Chim. Acta, 1990, 73, 1410; (b) R.
Krishnamurthy, S. Pitsch and G. Arrhenius, Origins Life Evol.
Biosphere, 1999, 29, 139–152.
17 (a) A. L. Weber, Origins Life Evol. Biosphere, 2001, 31, 71–86; (b) S.
Pizzarello and A. L. Weber, Science, 2004, 303, 1151.
18 For a review of chemoenzymatic synthesis of carbohydrates see:
H. J. M. Gijsen, L. Qiao, W. Fitz and C.-H. Wong, Chem.Rev., 1996,
443–473.
19 A proline catalyzed aldolization of propionaldehyde in DMF has
been reported to give carbohydrates with 47% ee: N. S. Chowdari,
D. B. Ramachary, A. Co´rdova and C. F. Barbas III, Tetrahedron
Lett., 2002, 43, 9591; a proline catalyzed asymmetric aldol reaction
to give sugars has also been reported in mixed solvents (DMSO–H2O
10 : 1, dioxane–H2O 10 : 1):; A. Co´rdova, W. Notz and C. F. Barbas
III, Chem. Commun., 2002, 24, 3024.
20 (a) For a recent proline catalyzed synthesis of protected sugars see:
A. B. Northrup, I. K. Mangion, F. Hettche and D. W. C. Macmillan,
Angew. Chem., Int. Ed., 2004, 43, 2152; (b) A. B. Northrup and
D. W. C. Macmillan, Science, 2004, 305, 1752–1755.
21 For amine-catalyzed aldol reactions in water see: T. J. Dickerson and
K. D. Janda, J. Am. Chem. Soc., 2002, 124, 3220; Y. Chen and J.-L.
Reymond, J. Org. Chem., 1995, 60, 6970.
22 (a) J. Kofoed, J. Nielsen and J.-L. Reymond, Bioorg. Med. Chem.
Lett., 2003, 15, 2445–2447; (b) Z. Tang, Z.-H. Yang, L.-F. Cun,
L.-Z. Gong, A.-Q. Mi and Y.-Z. Jiang, Org. Lett., 2004, 6, 2285–
2287; (c) H. J. Martin and B. M. List, SYNLETT, 2003, 12, 1901–
1902.
23 T. Darbre and M. Machuqueiro, Chem. Commun., 2003, 1090.
24 J. Kofoed, M. Machuqueiro, J.-L. Reymond and T. Darbre, Chem.
Commun., 2004, 1540–1541.
25 G. Schultz and M. Dreyer, J. Mol. Biol., 1996, 259, 458.
26 C.-H. Ng, H.-K. Fun, S.-B. Teo, S.-G. Teoh and K. Chinnakali, Acta
Crystallogr., Sect. C, 1995, 51, 244.
(L-threitol tetraacetate), ee ca. 10%. L-Threitol tetraacetate was
1
synthesized as reference for chiral GC and NMR: H NMR
(CDCl3, 300 MHz) d 2.09–2.13 (m, 12H, 4 × OAc), 4.08 (m, 2H,
CH2), 4.36 (m, 2H, CH2), 5.35 (m, 2H, CH). Anal. chiral GC
(240 ◦C, 106 KPa, 1,35 mL min−1): tR = 114.7.
Acknowledgements
This work was supported by the University of Berne, the Otto
Mønsted Foundation, the COST D25 program and the Swiss
National Science Foundation, the COST program, the Otto
Mønsted Fond and the Office Federal Suisse de la Recherche
Scientifique.
References
1 For reviews of prebiotic chemistry see: (a) J. D. Sutherland and J. N.
Whitfield, Tetrahedron, 1997, 53, 11493–11527; (b) R. A. Hughes,
M. P. Robertson, A. D. Ellington and M. Levy, Curr. Opin. Chem.
Biol., 2004, 8, 629–633; (c) S. A. Benner, A. Ricardo and M. A.
Carrigan, Curr. Opin. Chem. Biol., 2004, 8, 672–689.
2 (a) W. Gilbert, Nature, 1986, 319, 618; (b) P. A. Sharp, Cell, 1985, 42,
397–400; (c) for a review on the construction of an “RNA-world” see:
D. P. Bartel and P. J. Unrau, Trends. Cell. Biol., 1999, 12, M9–M13.
3 J. R. Lorsch and J. W. Szostak, Nature, 1994, 371, 31–36.
4 M. Illangasekare, Science, 1995, 267, 643–647.
5 B. L. Zhang and T. R. Cech, Nature, 1997, 390, 96–100.
6 T. M. Tarasow, Nature, 1997, 389, 54–57.
7 S. L. Miller and H. C. Urey, J. Am. Chem. Soc., 2000, 77, 2351.
8 J. M. Hollis, F. J. Lovas and P. R. Jewell, Astrophys. J. Lett., 2000,
540, L107–L110.
9 Comets and the Origin and Evolution of Life, ed. P. J. Thomas,
C. P. McKay and C. F. Chyba, Springer-Verlag, New York, 1997,
pp. 3–19, J. Oro´ and A. Lazcano; pp. 29–62, A. Delsemme; for a
recent update see:; S. Pizzrello, Origins Life Evol. Biosphere, 2004,
34, 25–34.
10 (a) A. Butlerow, Liebigs Ann. Chem., 1861, 120, 295; (b) E. H.
Ruckert, E. Pfeil and G. Scharf, Chem. Ber., 1965, 98, 2558; (c) G.
Harsch, H. Bauer and W. Voelter, Liebigs Ann. Chem., 1984, 623;
(d) N. W. Gabel and C. Ponnamperuma, Nature, 1967, 216, 453;
(e) C. Reid and L. E. Orgel, Nature, 1967, 216, 455; (f) R. F. Socha
and A. H. Weiss, J. Catal., 1981, 67, 207.
27 J. S. Sawardeker, J. H. Sloneker and A. Jeanes, Anal. Chem., 1965,
12, 1602–1604.
28 When erythrose was stirred with glycolaldehyde and Zn(Pro)2 under
the conditions described, a predominant formation of glucose over
the other hexoses is observed by GC; when threose was stirred with
glycolaldehyde and Zn(Pro)2, talose, and galactose were formed in
larger amount.
29 (a) W. R. Jones and P. C. Dedon, J. Am. Chem. Soc., 1999, 121,
9231–9232; (b) a potential prebiotic pathway from glycolaldehyde
to glycolaldehyde phosphate using amidotriphosphate has been
reported by R. Krishnamurthy, G. Arrhenius and A. Eschenmoser,
Origins Life Evol. Biosphere, 1999, 29, 333–354.
11 (a) R. Larralde, M. P. Robertson and S. L. Miller, Proc. Natl. Acad.
Sci. USA, 1995, 92, 8158–8160; (b) R. Shapiro, Origins Life Evol.
Biosphere, 1988, 18, 71–85.
O r g . B i o m o l . C h e m . , 2 0 0 5 , 3 , 1 8 5 0 – 1 8 5 5
1 8 5 5