Journal of Medicinal Chemistry
Article
(13) Habtemariam, A.; Melchart, M.; Fernandez, R.; Parsons, S.;
Oswald, I. D. H.; Parkin, A.; Fabbiani, F. P. A; Davidson, J. E.;
Dawson, A.; Aird, R. E.; Jodrell, D. I.; Sadler, P. J. Structure−Activity
Relationships for Cytotoxic Ruthenium(II) Arene Complexes
Containing N,N-, N,O-, and O,O-Chelating Ligands. J. Med. Chem.
2006, 49, 6858−6868.
Magiatis, P.; Polychronopoulos, P.; Greengard, P.; Skaltsounis, L.;
Meijer, L. Independent actions on cyclin-dependent kinases and aryl
hydrocarbon receptor mediate the antiproliferative effects of
indirubins. Oncogene 2004, 23, 4400−4412.
(32) Siemeister, G.; Thierauch, K. H.; Prien, O.; Jautelat, R.;
Eisenbrand, G. Therapeutic use of selective indirubin derivatives as
VEGF receptor inhibitors. Int. PatentWO 02/092079 A1, November
21, 2002.
(33) Davies, T. G.; Tunnah, P.; Meijer, L.; Marko, D.; Eisenbrand,
G.; Endicott, J. A.; Noble, M. E. M. Inhibitor Binding to Active and
Inactive CDK2 The Crystal Structure of CDK2-Cyclin A/ Indirubin-5-
Sulphonate. Structure 2001, 9, 389−397.
(34) Renhowe, P.; Pecchi, S.; Machajewski, T.; Shafer, C.; Taylor, C.;
McCrea, B.; McBride, C.; Jazan, E.; Wernette-Hammond, M. E.;
Harris, A. Quinolinone Derivatives as Tyrosine Kinase Inhibitors. Int.
Patent WO 02/22598 A1, March 21, 2002.
(35) Frazier, K.; Jazan, E.; McBride, C. M.; Pecchi, S.; Renhowe, P.
A.; Shafer, C. M.; Taylor, C.; Bussiere, D.; Min, He M.; Jansen, J. M.;
Lapointe, G.; Ma, S.; Vora, J.; Wiesmann, M. Design and structure−
activity relationship of heterocyclic analogs of 4-amino-3-benzimida-
zol-2-ylhydroquinolin-2-ones as inhibitors of receptor tyrosine kinases.
Bioorg. Med. Chem. Lett. 2006, 16, 2247−2251.
(36) Renhowe, P. A.; Pecchi, S.; Shafer, C. M.; Machajewski, T. D.;
Jazan, E. M.; Taylor, C.; Antonios-McCrea, W.; McBride, C. M.;
Frazier, K.; Wiesmann, M.; Lapointe, G. R.; Feucht, P. H.; Warne, R.
L.; Heise, C. C.; Menezes, D.; Aardalen, K.; Ye, H.; He, M.; Le, V.;
Vora, J.; Jansen, J. M.; Wernette-Hammond, M. E.; Harris, A. L.
Design, Structure−Activity Relationships and in Vivo Characterization
of 4-Amino-3-benzimidazol-2-ylhydroquinolin-2-ones: A Novel Class
of Receptor Tyrosine Kinase Inhibitors. J. Med. Chem. 2009, 52, 278−
292.
(37) Ladouceur, G. H.; Bear, B.; Bi, C.; Brittelli, D. R.; Burke, M. J.;
Chen, G.; Cook, J.; Dumas, J.; Sibley, R.; Turner, M. R. Indolyl
pyrazinone derivatives useful for treating hyper-proliferative disorders
and diseases associated with angiogenesis. Int. Patent WO 2004/
043950 A1, May 27, 2004.
(38) Aoki, K.; Koseki, J.; Takeda, S.; Aburada, M.; Miyamoto, K.
Convenient synthetic method for 3-(3-substituted indol-2-yl)-
quinoxalin-2-ones as VEGF inhibitor. Chem. Pharm. Bull. 2007, 55,
922−925.
(39) Westphal, G.; Scheybal, A.; Lipke, B.; Weber, F. G. Reactions
with pyridinium pyruvates. Pharmazie 1976, 31, 770−773.
(40) Westphal, G.; Scheybal, A.; Lipke, B.; Weber, F. G. Preparation
of several 3-hetaryl-2-quinoxalinones. Pharmazie 1977, 32, 563−565.
(41) Klicnar, J.; Hajek, M.; Dobas, I. Quinoxaline series. III.
Synthesis, reactions, and infrared spectra of some 3-hydroxy-2-
carboxymethylquinoxaline derivatives. Collect. Czech. Chem. Commun.
1965, 30, 3092−3101.
(42) Kandioller, W.; Hartinger, C. G.; Nazarov, A. A.; Kasser, J.;
John, R.; Jakupec, M. A.; Arion, V. B.; Dyson, P. J.; Keppler, B. K.
Tuning the anticancer activity of maltol-derived ruthenium complexes
by derivatization of the 3-hydroxy-4-pyrone moiety. J. Organomet.
Chem. 2009, 694, 922−929.
(43) Kandioller, W.; Hartinger, C. G.; Nazarov, A. A.; Kuznetsov, M.
L.; John, R. O.; Bartel, C.; Jakupec, M. A.; Arion, V. B.; Keppler, B. K.
From Pyrone to Thiopyrone LigandsRendering Maltol-Derived
Ruthenium(II)−Arene Complexes That Are Anticancer Active in
Vitro. Organometallics 2009, 28, 4249−4251.
(44) Canivet, J.; Karmazin-Brelot, L.; Suess-Fink, G. Cationic arene
ruthenium complexes containing chelating 1,10-phenanthroline
ligands. J. Organomet. Chem. 2005, 690, 3202−3211.
(14) Dyson, P. J. Systematic design of a targeted organometallic
antitumor drug in preclinical development. Chimia 2007, 61, 698−
703.
(15) Scolaro, C.; Chaplin, A. B.; Hartinger, C. G.; Bergamo, A.;
Cocchietto, M.; Keppler, B. K.; Sava, G.; Dyson, P. J. Tuning the
hydrophobicity of ruthenium(II)−arene (RAPTA) drugs to modify
uptake, biomolecular interactions and efficacy. Dalton Trans. 2007,
5065−5072.
(16) Ang, W. H.; Daldini, E.; Scolaro, C.; Scopelliti, R.; Juillerat-
Jeannerat, L.; Dyson, P. J. Development of Organometallic
Ruthenium−Arene Anticancer Drugs That Resist Hydrolysis. Inorg.
Chem. 2006, 45, 9006−9013.
(17) Pawson, T.; Kofler, M. Kinome signaling through regulated
protein−protein interactions in normal and cancer cells. Curr. Opin.
Cell Biol. 2009, 21, 147−153.
(18) Grant, S. K. Therapeutic Protein Kinase Inhibitors. Cell. Mol.
Life Sci. 2009, 66, 1163−1177.
(19) Noble, M. E.; Endicott, J. A.; Johnson, L. N. Protein kinase
inhibitors: insights into drug design from structure. Science 2004, 303,
1800−1805.
(20) Bregman, H.; Williams, D. S.; Atilla, G. E.; Carroll, P. J.;
Meggers, E. An Organometallic Inhibitor for Glycogen Synthase
Kinase 3. J. Am. Chem. Soc. 2004, 126, 13594−13595.
(21) Maksimoska, J.; Feng, L.; Harms, K.; Yi, C.; Kissil, J.;
Marmorstein, R.; Meggers, E. Targeting Large Kinase Active Site
with Rigid, Bulky Octahedral Ruthenium Complexes. J. Am. Chem. Soc.
2008, 130, 15764−15765.
(22) Atilla-Gokcumen, G. E.; Pagano, N.; Streu, C.; Maksimoska, J.;
Filippakopoulos, P.; Knapp, S.; Meggers, E. Extremely Tight Binding
of a Ruthenium Complex to Glycogen Synthase Kinase 3.
ChemBioChem 2008, 9, 2933−2936.
(23) Meggers, E. Targeting proteins with metal complexes. Chem.
Commun. 2009, 1001−1010.
(24) Bikker, J. A.; Brooijmans, N.; Wissner, A.; Mansour, T. S. Kinase
Domain Mutations in Cancer: Implications for Small Molecule Drug
Design Strategies. J. Med. Chem. 2009, 52, 1493−1509.
(25) Hoessel, R.; Leclerc, S.; Endicott, J. A.; Noble, M. E. M.; Lawrie,
A.; Tunnah, P.; Leost, M.; Damiens, E.; Marie, D.; Marko, D.;
Niederberger, E.; Tang, W.; Eisenbrand, G.; Meijer, L. Indirubin, the
active constituent of a Chinese antileukaemia medicine, inhibits cyclin-
dependent kinases. Nature Cell Biol. 1999, 1, 60−67.
(26) Eisenbrand, G.; Hippe, F.; Jakobs, S.; Muehlbeyer, S. Molecular
mechanisms of indirubin and its derivatives: novel anticancer
molecules with their origin in traditional Chinese phytomedicine. J.
Cancer Res. Clin. Oncol. 2004, 130, 627−635.
(27) Nam, S.; Buettner, R.; Turkson, J.; Kim, D.; Cheng, J. Q.;
Muehlbeyer, S.; Hippe, F.; Vatter, S.; Merz, K.; Eisenbrand, G.; Jove,
R. Indirubin derivatives inhibit Stat3 signaling and induce apoptosis in
human cancer cells. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 5998−6003.
(28) Lee, M. J.; Kim, M. Y.; Mo, J. S.; Ann, E. J.; Seo, M.-S.; Hong, J.-
A.; Kim, Y.-C.; Park, H. S. Indirubin-3′-monoxime, a derivative of a
Chinese anti-leukemia medicine, inhibits Notch1 signaling. Cancer Lett.
2008, 265, 215−225.
(29) Beauchard, A.; Ferandin, Y.; Frere, S.; Lozach, O.; Blairvacq, M.;
Meijer, L.; Thiery, V.; Besson, T. Synthesis of novel 5-substituted
indirubins as protein kinases inhibitors. Bioorg. Med. Chem. 2006, 14,
6434−6443.
(45) Wang, F.; Chen, H.; Parsons, S.; Oswald, I. D. H.; Davidson, J.
E.; Sadler, P. J. Kinetics of aquation and anation of ruthenium(II)
arene anticancer complexes, acidity and X-ray structures of aqua
adducts. Chem.Eur. J. 2003, 9, 5810−5820.
(30) Jautelat, R.; Brumby, T.; Schaefer, M.; Briem, H.; Eisenbrand,
G.; Schwahn, S.; Krueger, M.; Luecking, U.; Prien, O.; Siemeister, G.
From the insoluble dye indirubin towards highly active, soluble CDK2-
inhibitors. ChemBioChem 2005, 6, 531−540.
(31) Knockaert, M.; Blondel, M.; Bach, S.; Leost, M.; Elbi, C.; Hager,
G. L.; Nagy, S. R.; Han, D.; Denison, M.; Ffrench, M.; Ryan, X. P.;
(46) Peacock, A. F. A.; Habtemariam, A.; Fernandez, R.; Walland, V.;
Fabbiani, F. P. A; Parsons, S.; Aird, R. E.; Jodrell, D. I.; Sadler, P. J.
Tuning the Reactivity of Osmium(II) and Ruthenium(II) Arene
3412
dx.doi.org/10.1021/jm3000906 | J. Med. Chem. 2012, 55, 3398−3413