Organic Letters
Letter
(3) Hansch, C.; Leo, A.; Taft, R. W. Chem. Rev. 1991, 91, 165−195.
(4) (a) Tyrra, W.; Naumann, D.; Yagupolskii, Y. L. J. Fluorine Chem.
2003, 123, 183−187. (b) Kirij, N. V.; Tyrra, W.; Pantenburg, I.;
Naumann, D.; Scherer, H.; Naumann, D.; Yagupolskii, Y. L. J.
Organomet. Chem. 2006, 691, 2679−2685.
Scheme 5. Radical Clock Probe Experiment
(5) Magnier, E.; Vit, E.; Wakselman, C. Synlett 2001, 1260−1262.
(6) Tlili, A.; Billard, T. Angew. Chem., Int. Ed. 2013, 52, 6818−6819.
(7) (a) Teverovskiy, G.; Surry, D. S.; Buchwald, S. L. Angew. Chem.,
Int. Ed. 2011, 50, 7312−7314. (b) Chen, Q.-Y.; Duan, J.-X. J. Chem.
Soc., Chem. Commun. 1993, 918−919. (c) Zhang, C.-P.; Vicic, D. A. J.
Am. Chem. Soc. 2012, 134, 183−185. (d) Tran, L. D.; Popov, I.;
Daugulis, O. J. Am. Chem. Soc. 2012, 134, 18237−18240. (e) Yang, Y.-
D.; Azuma, A.; Tokunaga, E.; Yamasaki, M.; Shiro, M.; Shibata, N. J.
Am. Chem. Soc. 2013, 135, 8782−8785.
diene (CHD). The experiments showed that the reaction rates
and selectivities for trifluoromethylselenolation were not
affected. (Scheme 6).
Scheme 6. Radical Scavenger Experiment
(8) (a) Chen, C.; Xie, Y.; Chu, L.; Wang, R.-W.; Zhang, X.; Qing, F.-
L. Angew. Chem., Int. Ed. 2012, 51, 2492−2495. (b) Zhang, C.-P.;
Vicic, D. A. Chem.Asian J. 2012, 7, 1756−1758. (c) Shao, X.; Wang,
X.; Yang, T.; Lu, L.; Shen, Q. Angew. Chem., Int. Ed. 2013, 52, 3457−
3460.
(9) Nishiyama, Y.; Tokunaga, K.; Sonoda, N. Org. Lett. 1999, 1,
1725−1727.
The absence of cyclization product 8 and the lack of any
effect on product yields with the addition of CHD suggest that
the trifluoromethylselenolation are not in favor of the possible
involvement of radical species.
(10) Haas, A. J. Fluorine Chem. 1986, 32, 415−439.
(11) Umemoto, T.; Ishihara, S. Jpn Patent JP 07126245 A 19950516,
1995.
(12) (a) Billard, T.; Large, S.; Langlois, B. R. Tetrahedron Lett. 1997,
38, 65−68. (b) Billard, T.; Langlois, B. R. Tetrahedron Lett. 1996, 37,
6865−6868.
In summary, we have developed a general and practical
strategy for the trifluoromethylselenolation of aryl, heteroaryl
and alkyl halides by Cu(I) catalyst. The catalytic system is
compatible with a wide range of functional groups, such as
nitro, nitrile, methoxy, chloro, amide, ester, thioether, and
ether. Silver plays an important role in promoting the reaction
by transferring the SeCF3 group to copper species. An dimeric
copper trifluoromethylselenate [(phen)Cu(SeCF3)]2 (5) was
successfully isolated as an intermediate and characterized by X-
ray diffraction. Further applications of this methodology to
other distinctive substrates and substituents are in progress.
(13) Blond, G.; Billard, T.; Langlois, B. R. Tetrahedron Lett. 2001, 42,
2473−2475.
(14) Large, S.; Roques, N.; Langlois, B. R. J. Org. Chem. 2000, 65,
8848−8856.
(15) (a) Pooput, C.; Medebielle, M.; Dolbier, W. R. Org. Lett. 2004,
́
6, 301−303. (b) Pooput, C.; Dolbier, W. R.; Medebielle, M. J. Org.
Chem. 2006, 71, 3564−3568.
(16) Kondratenko, N. V.; Kolomeytsev, A. A.; Popov, V. I.;
Yagupolskii, L. M. Synthesis 1985, 667−669.
(17) (a) Weng, Z.; Lee, R.; Jia, W.; Yuan, Y.; Wang, W.; Feng, X.;
Huang, K.-W. Organometallics 2011, 30, 3229−3232. (b) Weng, Z.; Li,
H.; He, W.; Yao, L.-F.; Tan, J.; Chen, J.; Yuan, Y.; Huang, K.-W.
Tetrahedron 2012, 68, 2527−2531. (c) Huang, Y.; Fang, X.; Lin, X.; Li,
H.; He, W.; Huang, K.-W.; Yuan, Y.; Weng, Z. Tetrahedron 2012, 68,
9949−9953. (d) Lin, X.; Wang, G.; Li, H.; Huang, Y.; He, W.; Ye, D.;
Huang, K.-W.; Yuan, Y.; Weng, Z. Tetrahedron 2013, 69, 2628−2632.
(e) Zheng, H.; Huang, Y.; Wang, Z.; Li, H.; Huang, K.-W.; Yuan, Y.;
Weng, Z. Tetrahedron Lett. 2012, 53, 6646−6649.
ASSOCIATED CONTENT
* Supporting Information
■
S
Experimental procedures and spectral data for products and
mechanistic study experiments. This material is available free of
(18) (a) Kong, D.; Jiang, Z.; Xin, S.; Bai, Z.; Yuan, Y.; Weng, Z.
Tetrahedron 2013, 69, 6046−6050. (b) Tan, J.; Zhang, G.; Ou, Y.;
Yuan, Y.; Weng, Z. Chin. J. Chem. 2013, 31, 921−926.
(19) Yeo, J. S. L.; Vittal, J. J.; Hor, T. S. A. Eur. J. Inorg. Chem. 2003,
277−280.
AUTHOR INFORMATION
Corresponding Authors
■
(20) Weng, Z.; He, W.; Chen, C.; Lee, R.; Tan, D.; Lai, Z.; Kong, D.;
Yuan, Y.; Huang, K.-W. Angew. Chem., Int. Ed. 2013, 52, 1548−1552.
(21) (a) Ye, Y.; Lee, S. H.; Sanford, M. S. Org. Lett. 2011, 13, 5464−
5467. (b) Wang, X.; Xu, Y.; Mo, F.; Ji, G.; Qiu, D.; Feng, J.; Ye, Y.;
Zhang, S.; Zhang, Y.; Wang, J. J. Am. Chem. Soc. 2013, 135, 10330−
10333. (c) Zeng, Y.; Zhang, L.; Zhao, Y.; Ni, C.; Zhao, J.; Hu, J. J. Am.
Chem. Soc. 2013, 135, 2955−2958.
Author Contributions
∥These authors contributed equally.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
(22) Huang, C.; Liang, T.; Harada, S.; Lee, E.; Ritter, T. J. Am. Chem.
Soc. 2011, 133, 13308−13310.
This work was supported by National Natural Science
Foundation of China (21072030), the Research Fund for the
Doctoral Program of Higher Education of China (No.
20123514110003), the SRF for ROCS, SEM, China (2012-
1707), and Fuzhou University (022318, 022494).
(23) (a) Tyrra, W. E. J. Fluorine Chem. 2001, 112, 149−152.
(b) Tyrra, W. Heteroatom Chem. 2002, 13, 561−566. (c) Naumann,
D.; Tyrra, W.; Quadt, S.; Buslei, S.; Pantenburg, I.; Schafer, M. Z.
̈
Anorg. Allg. Chem. 2005, 631, 2733−2737.
(24) Dahlen, A.; Petersson, A.; Hilmersson, G. Org. Biomol. Chem.
2003, 1, 2423−2426.
REFERENCES
■
856.
(1) Leroux, F.; Jeschke, P.; Schlosser, M. Chem. Rev. 2005, 105, 827−
(2) Yagupol’skii, L. M.; Ilchenko, A. Y.; Kondratenko, N. V. Russ.
Chem. Rev. 1974, 43, 32−47.
527
dx.doi.org/10.1021/ol403406y | Org. Lett. 2014, 16, 524−527