C O M M U N I C A T I O N S
molecular formula CXHXO3 during in Vitro reactions.17 These have
been suggested to correspond to tetra-, penta-, and hexaketide
pyrone derailment products (8-10). These pyrones could arise from
offloading of PKS-bound intermediates similar to 4, whereby one
more round of chain extension and a simple cyclization would
release the 2-pyrones. In addition to these products, we also see
the simple triacetic acid lactone (11).
Facility at the University of Maryland, College Park and to Dr.
Alexei Gapeev, Director of Mass Spectrometry Facility at the
University of Maryland, Baltimore County for their assistance with
high and low resolution mass spectrometry, respectively. This work
was supported by NIH Grant ES001670. J.M.C. is currently a fellow
supported by the Damon Runyon Cancer Research Foundation
(DRG-2002-09, Harvard Medical School).
Iterative PKSs are generally regarded as highly processive,
releasing truncated or incorrectly processed polyketides in only trace
amounts unless denied an essential component of the synthetic
process.20,21 The simultaneous production of two different 15-
carbon linear polyenes by CalE8 with the assistance of thioesterase
CalE7 indicates that the calicheamicin PKS is not selectively
stopping at the ketone oxidation state in the final round of chain
extension. The synthesis of truncated polyketides 8-11 alongside
octaketides 1 and 2 leads us to suspect that CalE8 may be missing
some necessary biosynthetic element. Canonical nonribosomal
peptide synthetase (NRPS) and multidomainal PKS systems typi-
cally have all of the required modifying domains already encoded
in their sequences. There is, however, a growing body of literature
elucidating biosynthetic enzymes that act in trans on carrier protein-
tethered intermediates, often prior to full chain extension.22-24 The
absence of such accessory enzymes frequently results in biosynthetic
errors, which can manifest in a variety of ways.
In the landmark case of lovastatin biosynthesis, Hutchinson,
Vederas, and co-workers were able to show that without LovC, a
trans-acting enoyl reductase (ER), the lovastatin nonaketide syn-
thase LovB does not synthesize a full-length product. Instead, LovB
releases conjugated hexa- and heptaketide pyrone derailment
products,25 strikingly similar to the probable structures for CalE8
truncation products 8-10. A recent case from tenellin biosynthesis
describes the characterization of aberrant polyketide products that
reach the full programmed chain length but have incorrect oxidation
patterns when the mixed NRPS-PKS TenS is deprived of its
interaction with a trans-acting ER.26 The octaketide polyenes 1, 2,
and 3 produced by the calicheamicin biosynthetic enzymes may
also represent an instance of errant PKS behavior in the absence
of required auxiliary enzymes, despite the fact that they reflect the
full polyketide chain length expected for the calicheamicin aglycone.
We take the observations of both the methyl ketone 2 and the
heptaene 1 from in Vitro reactions of CalE8 and CalE7 as evidence
that neither is the branchpoint metabolite to 10-membered and
9-membered enediynes, respectively. The similar production of the
methyl ketone 2 from a 9-membered system, in addition to already-
observed heptaene 1, would bolster the argument for a more
convergent model of enediyne biosynthesis and support our
contention that divergence to 9- or 10-membered products results
from the action of one or more accessory enzymes acting in concert
with the enediyne PKS.
Supporting Information Available: Detailed experimental proce-
dures, HPLC conditions, and MS data for 1-3 and 8-11. This material
References
(1) Nicolaou, K. C.; Dai, W.-M. Angew. Chem., Int. Ed. Engl. 1991, 30, 1387.
(2) Enediyne antibiotics as antitumor agents; Borders, D. B., Doyle, T. W.,
Eds.; Marcel Dekker, Inc: New York, 1995.
(3) Nicolaou, K. C.; Hummel, C. W.; Pitsinos, E. N.; Nakada, M.; Smith, A. L.;
Shibayama, K.; Saimoto, H. J. Am. Chem. Soc. 1992, 114, 10082.
(4) Hitchcock, S. A.; Boyer, S. H.; Chu-Moyer, M. Y.; Olson, S. H.;
Danishefsky, S. J. Angew. Chem., Int. Ed. Engl. 1994, 33, 858.
(5) Myers, A. G.; Fraley, M. E.; Tom, N. J.; Cohen, S. B.; Madar, D. J. Chem.
Biol. 1995, 2, 33.
(6) Hensens, O. D.; Giner, J.-L.; Goldberg, I. H. J. Am. Chem. Soc. 1989,
111, 3295.
(7) Tokiwa, Y.; Miyoshi-Saitoh, M.; Kobayashi, H.; Sunaga, R.; Konishi, M.;
Oki, T.; Iwasaki, S. J. Am. Chem. Soc. 1992, 114, 4107.
(8) Lam, K. S.; Veitch, J. A.; Golik, J.; Krishnan, B.; Klohr, S. E.; Volk, K. J.;
Forenza, S.; Doyle, T. W. J. Am. Chem. Soc. 1993, 115, 12340.
(9) Ahlert, J.; Shepard, E.; Lomovskaya, N.; Zazopoulis, E.; Staffa, A.;
Bachmann, B. O.; Huang, K.; Fonstein, L.; Czisny, A.; Whitwam, R. E.;
Farnet, C. M.; Thorson, J. S. Science 2002, 297, 1173.
(10) Liu, W.; Christenson, S. D.; Standage, S.; Shen, B. Science 2002, 297,
1170.
(11) Liu, W.; Nonaka, K.; Nie, L.; Zhang, J.; Christenson, S. D.; Bae, J.; Van
Lanen, S. G.; Zazopoulis, E.; Farnet, C. M.; Yang, C. F.; Shen, B. Chem.
Biol. 2005, 12, 293.
(12) Van Lanen, S. G.; Oh, T. J.; Liu, W.; Wendt-Pienkowski, E.; Shen, B.
J. Am. Chem. Soc. 2007, 129, 13082.
(13) Gao, Q.; Thorson, J. S. FEMS Microbiol. Lett. 2008, 282, 105.
(14) Zazopoulis, E.; Huang, K.; Staffa, A.; Liu, W.; Bachmann, B. O.; Nonaka,
K.; Ahlert, J.; Thorson, J. S.; Shen, B.; Farnet, C. M. Nat. Biotechnol.
2003, 21, 187.
(15) Zhang, J.; Van Lanen, S. G.; Ju, J.; Liu, W.; Dorrestein, P. C.; Li, W.;
Kelleher, N. L.; Shen, B. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 1460.
(16) Kong, R.; Goh, L. P.; Liew, C. W.; Ho, Q. S.; Murugan, E.; Li, B.; Tang,
K.; Liang, Z.-X. J. Am. Chem. Soc. 2008, 130, 8142.
(17) Kotaka, M.; Kong, R.; Qureshi, I.; Ho, Q. S.; Sun, H.; Liew, C. W.; Goh,
L. P.; Cheung, P.; Mu, Y.; Lescar, J.; Liang, Z.-X. J. Biol. Chem. 2009,
284, 15739.
(18) Tee, E.-S.; Lim, C.-L. Food Chem. 1991, 41, 147.
(19) Liu, W.; Ahlert, J.; Gao, Q.; Wendt-Pienkowski, E.; Shen, B.; Thorson,
J. S. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 11959.
(20) Dimroth, P.; Walter, H.; Lynen, F. Eur. J. Biochem. 1970, 13, 98.
(21) Spencer, J. B.; Jordan, P. M. Biochem. J. 1992, 288, 839.
(22) Walsh, C. T.; Chen, H.; Keating, T. A.; Hubbard, B. K.; Losey, H. C.;
Luo, L.; Marshall, C. G.; Miller, D. A.; Patel, H. M. Curr. Opin. Chem.
Biol. 2001, 5, 525.
(23) Bumpus, S. B.; Magarvey, N. A.; Kelleher, N. L.; Walsh, C. T.; Calderone,
C. T. J. Am. Chem. Soc. 2008, 130, 11614.
(24) Weissman, K. J.; Muller, R. ChemBioChem 2008, 9, 826.
(25) Kennedy, J.; Auclair, K.; Kendrew, S. G.; Park, C.; Vederas, J. C.;
Hutchinson, C. R. Science 1999, 284, 1368.
(26) Halo, L. M.; Marshall, J. W.; Yakasai, A. A.; Song, Z.; Butts, C. P.; Crump,
M. P.; Heneghan, M.; Bailey, A. M.; Simpson, T. J.; Lazarus, C. M.; Cox,
R. J. ChemBioChem 2008, 9, 585.
Acknowledgment. We are grateful to Dr. Yue Li, Director of
the Department of Chemistry and Biochemistry Mass Spectrometry
JA904391R
9
12566 J. AM. CHEM. SOC. VOL. 131, NO. 35, 2009