We are interested in extending the range of substrates to
which ATH catalysts, notably those derived from Ru(II)/
TsDPEN combinations, can be successfully applied in the
formic acid/triethylamine (FA/TEA) reduction system.6
One challenging group ofketones isthe one whichcontains
an adjacent quaternary center.2f,g,7 Some notable successes
have been reported, for example, the use of a Ru(II)/amino
alcohol catalyst in the ATH of cyclic ketones containing R,
R-dimethyl substituents,2f and Ru(II)/oxazoline catalysts
capable of ATH of both pinacolone and 2,2-dimethylcy-
clohexanone in ee’s of >99%.2g In contrast, Ru(II)/
TsDPEN complexes, and their close analogues, appear
to be less efficient in the reduction of such substrates.
Tethered catalyst 46 has proved to benefit from an increased
level of activity and, therefore, seemed appropriate for use
in tests on hindered substrates. The reduction of pinaco-
lone gave, in our hands, a product of only 10% ee (S, 56%
isolated yield) after 24 h at 30 °C using 1 mol % of catalyst
(R,R)-4.6a This is in contrast to the reduction of PhCOtBu
which with 0.5 mol % of (R,R)-4 is reduced in 77% ee
(R, 95% conversion) after 32 h.6b In the latter case, the sense
of reduction is directed by the established CH/π interaction.
Given the challenge presented by sterically hindered sub-
strates, and the potential for the generation of novel
homochiral alcohols, we undertook an investigation into
the ATH of a range of R,R-disubstituted ketones.
Scheme 1. Reduction of β-Tetralone Derivatives
We prepared ketones 5aꢀe, which represent a series in
which steric bulk adjacent to the ketone is systematically
varied. The reduction of β-tetralone is reported to proceed
in 82% ee (R) in FA/TEA using catalyst (R,R)-1,2b although
methoxy-substituted β-tetralones have been reported to be
reduced with higher enantioselectivity.2e The product is of
a configuration which indicates that a CH/π edge/face
interaction determines the enantiocontrol of the reaction
(Figure 3a).2b Similarly, β-tetralone 5awas reduced in88%
ee (R) using catalyst (R,R)-4 (Scheme 1, Figure 2). In
previous work in our group, we have demonstrated that
R-substitutedβ-tetralones are alsoreduced inhigh ee under
the control of the key CH/π edge/face interaction
(Figure 3a).8 By placing large substituents between the
aryl ring of the substrate and its ketone, we hoped that the
effect would be to disrupt this interaction and provide a
means for correlation of the steric bulk with the enantios-
electivity of reduction.
(2) (a) Hashiguchi, S.; Fujii, A.; Takehara, J.; Ikariya, T.; Noyori, R.
J. Am. Chem. Soc. 1995, 117, 7562–7563. (b) Fujii, A.; Hashiguchi, S.;
Uematsu, N.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1996, 118, 2521–
2522. (c) Matsumura, K.; Hashiguchi, S.; Ikariya, T.; Noyori, R. J. Am.
Chem. Soc. 1997, 119, 8738–8739. (d) Murata, K.; Okano, K.; Miyagi,
M.; Iwane, H.; Noyori, R.; Ikariya, T. Org. Lett. 1999, 1, 1119–1121.
(e) Mogi, M.; Fuji, K.; Node, M. Tetrahedron: Asymmetry 2004, 15, 3715–
€
3717. (f) Hennig, M.; Puntener, K.; Scalone, M. Tetrahedron: Asymmetry
2000, 11, 1849–1858. (g) Nishibayashi, Y.; Takei, I.; Uemura, S.; Hidai, M.
Organometallics 1999, 18, 2291–2293.
(3) (a) Haack, K. J.; Hashiguchi, S.; Fujii, A.; Ikariya, T.; Noyori, R.
Angew. Chem., Int. Ed. 1997, 36, 285–288. (b) Alonso, D. A.; Brandt, P.;
Nordin, S. J. M.; Andersson, P. G. J. Am. Chem. Soc. 1999, 121, 9580–
9588. (c) Yamakawa, M.; Ito, H.; Noyori, R. J. Am. Chem. Soc. 2000,
122, 1466–1478. (d) Noyori, R.; Yamakawa, M.; Hashiguchi, S. J. Org.
Chem. 2001, 66, 7931–7944. (e) Yamakawa, M.; Yamada, I.; Noyori, R.
Angew. Chem., Int. Ed. 2001, 40, 2818–2821. (f) Brandt, P.; Roth, P.;
Andersson, P. G. J. Org. Chem. 2004, 69, 4885–4890. (g) Casey, C. P.;
Johnson, J. B. J. Org. Chem. 2003, 68, 1998–2001. (h) Handgraaf, J.-W.;
Meijer, E. J. J. Am. Chem. Soc. 2007, 129, 3099–3103.
Figure 2. Alcohols formed by reduction of hindered β-tetralones
using catalyst (R,R)-4.
In the event, the results were surprising. All of com-
pounds 5bꢀe were reduced in high enantiomeric excess,
higher than for β-tetralone 5a and with the same absolute
configuration (Scheme 1, Figure 2). This indicates that, in
this series, despite their high steric bulk, the substituents
reinforce the enantiocontrol of the reaction by the catalyst.
Indeed, as the group gets larger, the ee increases and
remains high even for 5c possessing a saturated spiro cycle.
For substrates 5d and 5e, an additional CH/π effect may
(4) (a) Bradley, P. A.; Carroll, R. L.; Lecouturier, Y. C.; Moore, R.;
Noeureuil, P.; Patel, B.; Snow, J.; Wheeler, S. Org. Proc. Res. Dev 2010,
14, 1326–1336. (b) Ding, Z.; Yang, J.; Wang, T.; Shen, Z.; Zhang, Y.
Chem. Commun 2009, 571–573. (c) Zhang, B.; Xu Org. Lett. 2009, 11,
4712–4715. (d) Liu, Z; Schultz, C. S.; Sherwood, C. A.; Krska, S.;
Dormer, P. G.; Desmond, R.; Lee, C.; Sherer, E. C.; Shpungin, J.; Cuff,
J.; Xu, F. Tetrahedron Lett. 2011, 52, 1685–1688. (e) Carpenter, I.;
Clarke, M. L. Synlett 2011, 65–68. (f) Kumaraswamy, G.; Ramakrishna,
G.; Sridhar, B. Tetrahedron Lett. 2011, 52, 1778–1782. (g) Geng, Z.; Wu,
Y.; Miao, S.; Shen, Z.; Zhang, Y. Tetrahedron Lett. 2011, 52, 907–909.
(5) (a) Reetz, M. T.; Li, X. J. Am. Chem. Soc. 2006, 128, 1044–1045.
(b) Mohar, B.; Stephan, M.; Urleb, U. Tetrahedron 2010, 66, 4144–4149.
(c) Baratta, W.; Benedetti, F.; Del Zotto, A.; Fanfoni, L.; Felluga, F.;
Magnolia, S.; Putignano, E.; Rigo, P. Organometallics 2010, 29, 3563–
3570. (d) Schlatter, A.; Woggon, W.-D. Adv. Synth. Catal. 2008, 350,
(7) (a) Diaz-Valenzuela, M. B.; Phillips, S. D.; France, M. B.; Gunn,
M. E.; Clarke, M. L. Chem.;Eur. J. 2009, 15, 1227–1232. (b) Ohkuma,
€
995–1000. (e) Ahlford, K.; Ekstrom, J.; Zaitsev, A. B.; Ryberg, P.;
~
Adolfsson, H. Chem.;Eur. J. 2009, 15, 11197–11209.
T.; Sandoval, C. A.; Srinivasan, R.; Lin, Q.; Wei, Y.; Muniz, K.; Noyori,
R. J. Am. Chem. Soc. 2005, 127, 8288–8289. (c) Lundgren, R. J.;
Stradiotto, M. Chem.;Eur. J. 2008, 14, 10388–10395. (d) Phillips,
S. D.; Fuentes, J. A.; Clarke, M. L. Chem.;Eur. J. 2010, 16, 8002–8005.
(8) (a) Alcock, N. J.; Mann, I.; Peach, P.; Wills, M. Tetrahedron:
Asymmetry 2002, 13, 2485–2490. (b) Alcock, N. J.; Hannedouche, J.;
Cross, D. J.; Kenny, J. A.; Mann, I.; Houson, I.; Campbell, L.;
Walsgrove, T.; Wills, M. Tetrahedron 2006, 62, 1864–1876.
(6) (a) Morris, D. J.; Hayes, A. M.; Wills, M. J. Org. Chem. 2006, 71,
7035–7044. (b) Hayes, A. M.; Morris, D. J.; Clarkson, G.; Wills, M.
J. Am. Chem. Soc. 2005, 127, 7318–7319. (c) Cheung, F. K.; Lin, C.;
Minissi, F.; Lorente Criville, A.; Graham, M. A.; Fox, D. J.; Wills, M.
Org. Lett. 2007, 9, 4659–4662. (d) Cheung, F. K. (K.); Clarke, A. J.;
ꢀ
Glarkson, G. J.; Fox, D. J.; Graham, M. A.; Lin, C.; Lorente Criville, A.;
Wills, M. Dalton Trans. 2010, 39, 1395–1402.
Org. Lett., Vol. 13, No. 16, 2011
ꢀ
4305