Journal of the Iranian Chemical Society
5. G.W. Cave, M.J. Hardie, B.A. Roberts, C.L. Raston, Eur. J. Org.
Chem. 2001, 3227 (2001)
The scope of the present protocol has been explored
for the synthesis of 2,4,6-triarylpyridine using substituted
aldehyde and substituted acetophenones, wherein, electron-
withdrawing substituents variants showed comparable yield
and time to the substituted aldehyde or substituted acetophe-
nones 2,4,6-triarylpyridine. (Table 3, entries 15–19).
The postulated mechanism for the synthesis of 2,4,6-tri-
phenylpyridine is shown in Scheme 2; the reaction involves
tion, and finally air oxidation. Condensation of an aldehyde
and acetophenone forms aldol product; on the other hand,
a molecule of acetophenone with ammonia forms an enam-
ine adduct. The addition of enamine to the aldol product
followed by cyclisation gives dihydropyridine. Finally, air
oxidation afforded the final product. Activated Fuller’s earth
aids aldol condensation, Michael addition, and precipitated
oxidation of dihydropyridine to the final product. The reac-
tion with electron-withdrawing groups of aromatic alde-
hydes is faster than the electron-donating one.
6. R.K. Jetti, A. Nangia, F. Xue, T.C. Mak, Chem. Commun. 10, 919
(2001)
7. Z. Clyde-Watson, N. Bampos, J.K. Sanders, New J. Chem. 22,
1135 (1998)
8. E.C. Constable, C.E. Housecroft, M. Neuburger, D. Phillips, P.R.
Raithby, E. Schofield, E. Sparr, D.A. Tocher, M. Zehnder, Y. Zim-
mermann, J. Chem. Soc. Dalton Trans. 13, 2219 (2000)
9. S. Kelch, M. Rehahn, Macromolecules 32, 5818 (1999)
10. B.G. Lohmeijer, U.S. Schubert, Angew. Chem. Int. Ed. 41, 3825
(2002)
11. B.G. Lohmeijer, U.S. Schubert, J. Polym. Sci. Part A Poly. Chem.
41, 1413 (2003)
12. P.R. Andres, U.S. Schubert, Adv. Mater. 16, 1043 (2004)
13. K.A. Leonard, M.I. Nelen, T.P. Simard, S.R. Davies, S.O. Goll-
nick, A.R. Oseroff, S.L. Gibson, R. Hilf, L.B. Chen, M.R. Detty,
J. Med. Chem. 42, 3953 (1999)
14. H. Han, L.H. Hurley, Trends Pharmacol. Sci. 21, 136 (2000)
15. J.L. Li, R.J. Harrison, A.P. Reszka, R.M. Brosh, V.A. Bohr, S.
Neidle, I.D. Hickson, Biochemistry 40, 15194 (2001)
16. A. Siddiqui-Jain, C.L. Grand, D.J. Bearss, L.H. Hurley, Proc. Nat.
Acad. Sci. 99, 11593 (2002)
17. L.R. Kelland, Eur. J. Cancer 41, 971 (2005)
18. C.C. Chang, J.F. Chu, F.J. Kao, Y.C. Chiu, P.J. Lou, H.C. Chen,
T.C. Chang, Anal. Chem. 78, 2810 (2006)
19. F. Kroehnke, Synthesis 1976, 1 (1976)
20. F. Kröhnke, W. Zecher, J. Curtze, D. Drechsler, K. Pfleghar, K.E.
Schnalke, W. Weis, Angew. Chem. Int. Ed. 1, 626 (1962)
21. K.T. Potts, M. Cipullo, P. Ralli, G. Theodoridis, J. Am. Chem.
Soc. 103, 3584 (1981)
Conclusion
In conclusion, A mild, efficient, and ecological approach
for the synthesis of 2,4,6-trisubstituted pyridines via the
condensation of aromatic ketones with aromatic aldehydes
and ammonium acetate in the presence of activated Fuller’s
earth clay as a recyclable heterogeneous solid acid catalyst
has been developed. Due to the mild reaction conditions,
good to excellent yields and easy workup procedure, the
present protocol has edge over the other methods. Moreo-
ver, present method tolerates a wide variety of substituents.
The trisubstituted pyridines were produced without forma-
tion of any other side product. Activated Fuller’s earth is an
inexpensive, eco-friendly, efficient heterogeneous catalyst.
The catalyst can be easily prepared, used, recovered, and
recycled with no loss of significant catalytic activity.
22. T. Kobayashi, H. Kakiuchi, H. Kato, Bull. Chem. Soc. Jpn. 64,
392 (1991)
23. H.M. Adib, S.A. Tahermansouri, B. Koloogani, H.R. Moham-
madi, Bijanzadeh, Tetrahedron Lett. 47, 5957 (2006)
24. X.Q. Huang, H.X. Li, J.X. Wang, X.F. Jia, Chin. Chem. Lett. 16,
607 (2005)
25. L. Nagarapu, R. Peddiraju, S. Apuri, Catal. Commun. 8, 1973
(2007)
26. M. Adib, H. Tahermansouri, S.A. Koloogani, B. Mohammadi,
H.R. Bijanzadeh, Tetrahedron Lett. 47, 5957 (2006)
27. M.M. Heravi, K. Bakhtiari, Z. Daroogheha, F.F. Bamoharram,
Catal. Commun. 8, 1991 (2007)
28. Y.M. Ren, C. Cai, Monatsh. Chem. 140, 49 (2009)
29. C. Mukhopadhyay, P.K. Tapaswi, R.J. Butcher, Tetrahedron Lett.
51, 1797 (2010)
30. S. Tu, T. Li, F. Shi, F. Fang, S. Zhu, X. Wei, Z. Zong, Chem. Lett.
34, 732 (2005)
31. H. Wu, Y. Wan, L. Lu, Aust. J. Chem. 12, 155 (2009)
32. B. Maleki, D. Azarifar, H. Veisi, S.F. Hojati, H. Salehabadi, R.N.
Yami, Chin. Chem. Lett. 21, 1346 (2010)
Acknowledgements The authors are grateful to University Grants
Commission (UGC), India for their financial support.
33. N. Montazeri, S. Mahjoob, Chin. Chem. Lett. 23, 419 (2012)
34. B. Maleki, Coll. Czech. Chem. Commun. 76, 27 (2010)
35. P.V. Shinde, V.B. Labade, J.B. Gujar, B.B. Shingate, M.S. Shin-
gare, Tetrahedron Lett. 53, 1523 (2012)
References
36. J. Safari, S. Gandomi-Ravandi, M.B. Borujeni, J. Chem. Sci. 125,
1063 (2013)
1. B.Y. Kim, J.B. Ahn, H.W. Lee, S.K. Kang, J.H. Lee, J.S. Shin,
S.K. Ahn, C. Hong, S.S. Yoon, Eur. J. Med. Chem. 39, 433 (2004)
2. I.J. Enyedy, S. Sakamuri, W.A. Zaman, K.M. Johnson, S. Wang,
Bioorg. Med. Chem. Lett. 13, 513 (2003)
37. D.S. Rekunge, K.S. Indalkar, G.U. Chaturbhuj, Tetrahedron Lett.
57, 5815 (2016)
38. C.K. Khatri, D.S. Rekunge, G.U. Chaturbhuj, New J. Chem. 40,
10412 (2016)
3. A.D. Pillai, P.D. Rathod, P.X. Franklin, M. Patel, M. Nivsarkar,
K.K. Vasu, H. Padh, V. Sudarsanam, Biochem. Biophys. Com-
mun. 301, 183 (2003)
39. C.K. Khatri, V.B. Satalkar, G.U. Chaturbhuj, Tetrahedron Lett.
58, 694 (2017)
40. D.S. Rekunge, C.K. Khatri, G.U. Chaturbhuj, Tetrahedron Lett.
58, 1240 (2017)
4. A.R. Katritzky, C.W. Rees, E.F. Scriven, Comprehensive Hetero-
cyclic Chemistry II, vol. 3, (Elsevier, New York, 1996)
1 3