7580
J . Org. Chem. 1998, 63, 7580-7581
En a n tio- a n d Regioselective Syn th esis of a
(Z)-Alk en e cis-P r olin e Mim ic
Scott A. Hart, Michal Sabat, and Felicia A. Etzkorn*
University of Virginia, Department of Chemistry, McCormick
Road, Charlottesville, Virginia 22901
Received J uly 16, 1998
F igu r e 1. cis-Pro mimics and cis-/trans-Pro equilibrium.
Proline is the unique dialkylated member of the 20
common natural amino acids, resulting in cis/trans amide
bond isomerization. Isomerization of proline has profound
effects on peptide and protein structure1 and results in
structural issues for every peptide containing a proline.
Several bioactive peptides contain cis-Pro,2-5 a type-VI
â-turn,6 though it is not always known whether the bioactive
conformation is trans- or cis-Pro.7-12 We have synthesized
an isosteric mimic of a cis-Pro dipeptide that will be useful
in rational drug design and protein folding studies, Figure
1. Our mimic is suitable for stabilizing the bioactive con-
formation of peptides and proteins. The cis-Pro mimic will
be incorporated into substrate analogues for the peptidyl-
prolyl isomerase enzymes, cyclophilin and FK506 binding
protein (FKBP), that preferentially bind cis-Pro substrates.13
The peptide Ac-Ala-cis-Pro-NHMe and the corresponding
mimic, 1a (Figure 1), were subjected to a MonteCarlo
conformational search and minimized using the Amber force
field with water solvation in MacroModel v. 3.5a. The lowest
energy structure of the mimic overlayed with the peptide
on the bonds marked with vectors with root-mean-square
deviation of 0.17 Å, Figure 1. The vectors14 in this case are
part of the peptide backbone, giving direction to attached
peptide chains.
Sch em e 1
Sch em e 2
The conformationally rigid (Z)-alkene isostere of Ala-cis-
Pro was synthesized in
a form suitably protected for
alkene trans isosteres have been made.19 Stereoselective
routes to trans-alkene dipeptide isosteres16,20,21 and trans-
Pro mimics are known.22
incorporation into peptidomimetics. The (Z)-alkene mimic
is a very good isostere for the cis-amide bond and does not
introduce additional functionality that could interfere with
peptide structure. Surprisingly, this simple dipeptide mimic
has not yet been synthesized. Other cis-proline mimics have
been reviewed.5,15 Nonproline cis-amide alkene isosteres
have been made,16 some as E/Z mixtures.17,18 The fluoro-
The synthetic challenges associated with the cis-Pro mimic
were as follows: (1) versatility for introducing a variety of
amino acid side chains to mimic the residue N-terminal to
Pro, (2) enantiospecific synthesis of the key S,R enantiomer
of the mimic, and (3) formation of the (Z)-alkene exocyclic
to a cyclopentyl ring to mimic the cis-amide. The R-amino
acid starting material permits introduction of a wide variety
of amino acid side chains into the mimic and is the origin of
stereoselectivity for the synthesis, Scheme 1. A Still-Wittig
[2,3]-sigmatropic rearrangement introduced the (Z)-alkene
and transferred chirality to the cyclopentyl ring.23
The enantio- and regioselective synthesis of the dipep-
tide mimic of L-Ala-cis-L-Pro is shown in Schemes 2 and 3.
Beginning with L-Ala, the Weinreb amide 2 was prepared
according to published procedures.24 The reaction of 2 with
cyclopentenyllithium25,26 gave the desired ketone 3 in 93%
* To whom correspondence should be addressed. Tel.: (804) 924-3135.
Fax: (804)-924-3567. E-mail: fae8m@virginia.edu.
(1) Ramachandran, G. N.; Mitra, A. K. J . Mol. Biol. 1976, 107, 85-92.
(2) Constantine, K. L.; Ramesh, V.; Ba´nyai, L.; Trexler, M.; Patthy, L.;
Llina´s, M. Biochemistry 1991, 30, 1663-1672.
(3) Werner, M. H.; Wemmer, D. E. Biochemistry 1992, 31, 999-1010.
(4) Lee, W.; J ablonsky, M. J .; Watt, D. D.; Krishna, N. R. Biochemistry
1994, 33, 2468-2475.
(5) Brady, S. F.; Paleveda, W. J ., J r.; Arison, B. H.; Saperstein, R.; Brady,
E. J .; Raynor, K.; Reisine, T.; Veber, D. F.; Freidinger, R. M. Tetrahedron
1993, 49, 3449-3466.
(6) Richardson, J . S. Adv. Protein Chem. 1981, 34, 167-339.
(7) Tessmer, M. R.; Meyer, J .-P.; Hruby, V. J .; Kallick, D. A. J . Med.
Chem. 1997, 40, 2148-2155.
(8) Barkocy-Gallagher, G. A.; Cannon, J . G.; Bassford, P. J ., J r. J . Biol.
Chem. 1994, 269, 13609-13613.
(9) Amodeo, P.; Morelli, M. A. C.; Motta, A. Biochemistry 1994, 33,
10754-10762.
(17) Bol, K. M.; Liskamp, R. M. J . Tetrahedron 1992, 48, 6425-6438.
(18) Kaltenbronn, J . S.; Hudspeth, J . P.; Lunney, E. A.; Michniewicz, B.
M.; Nicolaides, E. D.; Repine, J . T.; Roark, W. H.; Stier, M. A.; Tinney, F.
J .; Woo, P. K. W.; Essenburg, A. D. J . Med. Chem. 1990, 33, 838-845.
(19) Welch, J . T.; Lin, J . Tetrahedron 1996, 52, 291-304.
(20) Fujii, N.; Habashita, H.; Shigemori, N.; Otaka, A.; Ibuka, T.; Tanaka,
M.; Yamamoto, Y. Tetrahedron Lett. 1991, 32, 4969-4972.
(21) Spaltenstein, A.; Carpino, P. A.; Miyake, F.; Hopkins, P. B. Tetra-
hedron Lett. 1986, 27, 2095-2098.
(10) Evans, T. C., J r.; Nelsesturn, G. L. Biochemistry 1996, 35, 8210-
8215.
(11) Cann, J . R.; Liu, X.; Stewart, J . M.; Gera, L.; Kotovych, G.
Biopolymers 1994, 34, 869-878.
(12) Viles, J . H.; Mitchell, J . B. O.; Gough, S. L.; Doyle, P. M.; Harris, C.
J .; Sadler, P. J .; Thornton, J . M. Eur. J . Biochem. 1996, 242, 352-362.
(13) Konno, M.; Ito, M.; Hayano, T.; Takahashi, N. J . Mol. Biol. 1996,
256, 897-908.
(22) Andres, C. J .; Macdonald, T. L.; Ocain, T. D.; Longhi, D. J . Org.
Chem. 1993, 58, 6609-6613.
(14) Etzkorn, F. A.; Guo, T.; Lipton, M.; Goldberg, S.; Bartlett, P. A. J .
Am. Chem. Soc. 1994, 116, 10412-10425.
(23) Still, W. C.; Mitra, A. J . Am. Chem. Soc. 1978, 100, 1927-1928.
(24) Hoffman, R. W.; Ru¨hl, T.; Chemla, F.; Zahneisen, T. Liebigs Ann.
Chem. 1992, 719-724.
(15) Beausoleil, E.; Lubell, W. D. J . Am. Chem. Soc. 1996, 118, 12902-
12908.
(16) Bohnstedt, A. C.; Prasad, J . V. N. V.; Rich, D. H. Tetrahedron Lett.
1993, 34, 5217-5220.
(25) Lee, K.; Wiemer, D. F. Tetrahedron Lett. 1993, 34, 2433-2436.
(26) Pross, A.; Sternhell, S. Aust. J . Chem. 1970, 23, 989-1003.
10.1021/jo981387f CCC: $15.00 © 1998 American Chemical Society
Published on Web 10/08/1998