A. M. Jacob, C. J. Moody / Tetrahedron Letters 46 (2005) 8823–8825
8825
R1
10. Kotha, S.;Mandal, K.;Deb, A. C.;Banerjee, S.
hedron Lett. 2004, 45, 9603–9605.
11. Davis, C. J.;Hurst, T. E.;Jacob, A. M.;Moody, C. J. J.
Org. Chem. 2005, 70, 4414–4422.
12. For a review, see: Hughes, D. L. Org. Prep. Proced. Int.
1996, 28, 127–164.
13. Steinreiber, A.;Stadler, A.;Mayer, S. F.;Faber, K.;
Kappe, C. O. Tetrahedron Lett. 2001, 42, 6283–6286.
14. Lampariello, L. R.;Piras, D.;Rodriquez, M.;Taddei, M.
J. Org. Chem. 2003, 68, 7893–7895.
Tetra-
O
1. Ph3P, DIAD
toluene, 300 W
220 oC, 30 min
OH
MeO
R
MeO
HO
2. NH4OCHO, Pd/C, 10 W, 10 min
O
3. Fremy's salt, NaH2PO4,
aq acetone, 10 W, 20 min or
salcomine, O2, MeCN, 10 W, 20 min
5a R = C5H11
5b R = C15H31
Scheme 1.
15. Combined Mitsunobu reaction–Claisen rearrangement: gen-
eral procedure. Phenol (0.81 mmol), allylic alcohol
(1.21 mmol) and triphenylphosphine (0.359 g, 1.37 mmol)
were dissolved in toluene (2 mL). DIAD (0.21 mL,
1.05 mmol) was added, the tube sealed and the solution
was heated at 220–250 °C for 30 min in a microwave
reactor (300 W). The solvent was removed under reduced
pressure and the crude product was purified by flash
chromatography on basic alumina, eluting with light
petroleum–ether (99.9:0.1) to give the Claisen rearrange-
ment product.
16. Gomez-Lara, J.;Gutierrez-Perez, R.;Penieres-Carrillo,
G.;Lopez-Cortes, J. G.;Escudero-Salas, A.;Alvarez-
Toledano, C. Synth. Commun. 2000, 30, 2713–2720.
17. Hashemi, M. M.;Akhbari, M. Monatsh. Chem. 2003, 134,
1561–1563.
nols to quinones appeared adaptable for use under
microwave conditions, namely cerium(IV) ammonium
nitrate,26 TEMPO27 and MagtrieveTM.28,29 Although
none of the reactions are particularly high-yielding, with
two exceptions they all proceed rapidly and give the
corresponding quinones 5, and were deemed suitable
for use in a synthetic sequence.
Hence using a combination of microwave-assisted reac-
tions, the benzoquinone natural products primin 5a and
2-methoxy-6-pentadecyl-1,4-benzoquinone 5b were syn-
thesized from guaiacol in four reaction steps—the com-
bined Mitsunobu–Claisen process, catalytic transfer
hydrogenation30,31 and phenol oxidation—with a total
reaction time of 1 h in overall yields of 43% and 28%,
respectively (Scheme 1).
18. Kato, N.;Sugaya, T.;Mimura, T.;Ikuta, M.;Kato, S.;
Kuge, Y.;Tomioka, S.;Kasai, M. Synthesis 1997, 625–
627.
19. Barret, R.;Daudon, M. Tetrahedron Lett. 1990, 31, 4871–
4872.
20. Chilin, A.;Pastorini, G.;Castellin, A.;Bordin, F.;
Rodighiero, P.;Guiotto, A. Synthesis 1995, 1190–1194.
21. Parker, K. A.;Su, D.-S. Potassium Nitrosodisulfonate. In
Encyclopedia of Reagents for Organic Synthesis;John
Wiley and Sons: Chichester, 1995;Vol. 6, pp 4271–4274.
22. DeJong, C. R. H. I.;Hageman, H. J.;Hoentjen, G.;Mus,
W. J. Org. Synth. 1988, Coll. Vol. 6, 412–413.
23. Parker, K. A.;Taveras, D. Salcomine. In Encyclopedia of
Reagents for Organic Synthesis;John Wiley and Sons:
Chichester, 1995;Vol. 6, pp 4423–4425.
Acknowledgements
We thank the EPSRC for funding, the EPSRC Mass
Spectrometry Centre at Swansea for mass spectra, the
EPSRC Chemical Database Service at Daresbury,32
and David Lofty and his colleagues at CEM Microwave
Technology Ltd. for their interest in our work.
References and notes
24. Adam, W.;Herrmann, W. A.;Lin, J. H.;Sahamoller,
C. R. J. Org. Chem. 1994, 59, 8281–8283.
25. Sun, H. J.;Harms, K.;Sundermeyer, J. J. Am. Chem. Soc.
2004, 126, 9550–9551.
1. Tierney, J. P.;Lidstro¨m, P. Microwave Assisted Organic
Synthesis;Blackwell: Oxford, 2005.
26. Ho, T.-L. Cerium(IV) Ammonium Nitrate. In Encyclo-
pedia of Reagents for Organic Synthesis;John Wiley and
Sons: Chichester, 1995;Vol. 2, pp 1025–1029.
27. Minisci, F.;Recupero, F.;Cecchetto, A.;Gambarotti, C.;
Punta, C.;Faletti, R.;Paganelli, R.;Pedulli, G. F. Eur. J.
Org. Chem. 2004, 109–119.
2. Giguere, R. J.;Bray, T. L.;Duncan, S. M.;Majetich, G.
Tetrahedron Lett. 1986, 27, 4945–4948.
3. Bagnell, L.;Cablewski, T.;Strauss, C. R.;Trainor, R. W.
J. Org. Chem. 1996, 61, 7355–7359.
4. An, J. Y.;Bagnell, L.;Cablewski, T.;Strauss, C. R.;
Trainor, R. W. J. Org. Chem. 1997, 62, 2505–2511.
5. Kumar, H. M. S.;Anjaneyulu, S.;Reddy, B. V. S.;Yadav,
J. S. Synlett 2000, 1129–1130.
28. Bogdal, D.;Lukasiewicz, M.;Pielichowski, J.;Miciak, A.;
Bednarz, S. Tetrahedron 2003, 59, 649–653.
29. Lukasiewicz, M.;Bogdal, D.;Pielichowski, J. Adv. Synth.
Catal. 2003, 345, 1269–1272.
6. Daskiewicz, J. B.;Bayet, C.;Barron, D. Tetrahedron Lett.
2001, 42, 7241–7244.
30. Banik, B. K.;Barakat, K. J.;Wagle, D. R.;Manhas,
M. S.;Bose, A. K. J. Org. Chem. 1999, 64, 5746–5753.
7. Baxendale, I. R.;Lee, A. L.;Ley, S. V. Synlett 2001, 1482–
1484.
31. Berthold, H.;Schotten, T.;Honig, H.
1607–1610.
Synthesis 2002,
8. Baxendale, I. R.;Lee, A. L.;Ley, S. V. J. Chem. Soc.,
Perkin Trans. 1 2002, 1850–1857.
32. Fletcher, D. A.;McMeeking, R. F.;Parkin, D. J. J. Chem.
Inf. Comp. Sci. 1996, 36, 746–749.
9. Al-Maharik, N.;Botting, N. P. Tetrahedron 2003, 59,
4177–4181.