Communication
Green Chemistry
M. Porcelloni and J. R. Studley, Angew. Chem., Int. Ed.,
2001, 40, 1430–1433; (d) O. Illa, M. Arshad, A. Ros,
E. M. McGarrigle and V. K. Aggarwal, J. Am. Chem. Soc.,
2010, 132, 1828–1830; (e) M.-M. Lou, H. Wang, L. Song,
H.-Y. Liu, Z.-Q. Li, X.-S. Guo, F.-G. Zhang and B. Wang,
J. Org. Chem., 2016, 81, 5915–5921; (f) Z.-W. Zhang,
H.-B. Li, J. Li, C.-C. Wang, J. Feng, Y.-H. Yang and S. Liu,
J. Org. Chem., 2020, 85, 537–547.
3 (a) A.-H. Li, Y.-G. Zhou, L.-X. Dai, X.-L. Hou, L.-J. Xia and
L. Lin, Angew. Chem., Int. Ed. Engl., 1997, 36, 1317–1319;
(b) S. Hajra, S. M. Aziz, B. Jana, P. Mahish and D. Das, Org.
Lett., 2016, 18, 532–535; (c) L. Li, M. Yang, Q. He and
R. Fan, Nat. Commun., 2020, 11, 4805; (d) B.-H. Zhu,
J.-C. Zheng, C.-B. Yu, X.-L. Sun, Y.-G. Zhou, Q. Shen and
Y. Tang, Org. Lett., 2010, 12, 504–507.
Scheme 3 Proposed mechanism for electro-synthesizing sulfur ylides.
4 (a) R. K. Kunz and D. W. C. MacMillan, J. Am. Chem. Soc.,
2005, 127, 3240–3241; (b) Q.-Z. Li, X. Zhang, R. Zeng,
Q.-S. Dai, Y. Liu, X.-D. Shen, H.-J. Leng, K.-C. Yang and
J.-L. Li, Org. Lett., 2018, 20, 3700–3704; (c) D. Antoniak and
M. Barbasiewicz, Org. Lett., 2019, 21, 9320–9325;
(d) R. Zhou, X. Deng, J. Zheng, Q. Shen, X. Sun and
Y. Tang, Chin. J. Chem., 2011, 29, 995–1000; (e) B.-H. Zhu,
R. Zhou, J.-C. Zheng, X.-M. Deng, X.-L. Sun, Q. Shen and
Y. Tang, J. Org. Chem., 2010, 75, 3454–3457.
5 (a) E. Vedejs, Acc. Chem. Res., 1984, 17, 358–364;
(b) H. Zhang, B. Wang, H. Yi, Y. Zhang and J. Wang, Org.
Lett., 2015, 17, 3322–3325; (c) I. Colomer, M. Velado,
R. Fernandez de la Pradilla and A. Viso, Chem. Rev., 2017,
117, 14201–14243; (d) K. J. Hock and R. M. Koenigs, Angew.
Chem., Int. Ed., 2017, 56, 13566–13568; (e) F. Tang, Y. Yao,
Y.-J. Xu and C.-D. Lu, Angew. Chem., Int. Ed., 2018, 57,
15583–15586; (f) X. Lin, W. Yang, W. Yang, X. Liu and
X. Feng, Angew. Chem., Int. Ed., 2019, 58, 13492–13498.
6 (a) P. C. Cagle, O. Meyer, K. Weickhardt, A. M. Arif and
J. A. Gladysz, J. Am. Chem. Soc., 1995, 117, 11730–11744;
(b) M. P. Devery and R. S. Dickson, J. Chem. Soc., Chem.
Commun., 1994, 1721–1722; (c) F. Li, C. Pei and
R. M. Koenigs, Org. Lett., 2020, 22, 6816–6821.
Conclusions
In summary, we have developed an unprecedented ambient
temperature electro-oxidative coupling of sulfides with active
methylene compounds to give sulfur ylides in a continuous-
flow reactor under catalyst- and oxidant-free conditions. Owing
to the use of continuous-flow equipment, this method features
mild and green reaction conditions, high efficiency and a
broad substrate scope and is easy to scale up, which shows tre-
mendous application potential in industrial chemistry.
Furthermore, the products generated with phenothiazine
scaffolds are used as potential organic catalysts in photoredox
reactions and electrosynthesis.
Conflicts of interest
There are no conflicts to declare.
Acknowledgements
The research was supported by the National Natural Science
Foundation of China (grant no. 21776130, 22008118 and
22078150).
7 (a) M. Makosza and J. Winiarski, Acc. Chem. Res., 1987, 20,
282–289; (b) P. Ghosh, N. Y. Kwon, S. Kim, S. Han,
S. H. Lee, W. An, N. K. Mishra, S. B. Han and I. S. Kim,
Angew. Chem., 2021, 60, 191–196.
8 (a) X. Chen, M. Wang, X. Zhang and X. Fan, Org. Lett.,
2019, 21, 2541–2545; (b) C. Knittl-Frank, I. Saridakis,
T. Stephens, R. Gomes, J. Neuhaus, A. Misale, R. Oost,
A. Oppedisano and N. Maulide, Chem. – Eur. J., 2020, 26,
10972–10975; (c) Y. Zhou, Y. Chen and Y. Huang, Org. Lett.,
2020, 22, 5941–5946; (d) F. Yuan, D.-M. Yan, P.-P. Gao,
D.-Q. Shi, W.-J. Xiao and J.-R. Chen, ChemCatChem, 2021,
13, 543–547; (e) M. M. D. Pramanik, F. Yuan, D.-M. Yan,
W.-J. Xiao and J.-R. Chen, Org. Lett., 2020, 22, 2639–2644;
(f) F. Zhou, Y. Cheng, X.-P. Liu, J.-R. Chen and W.-J. Xiao,
Chem. Commun., 2019, 55, 3117–3120.
Notes and references
1 Selected reviews on the application of sulfur ylides:
(a) A.-H. Li, L.-X. Dai and V. K. Aggarwal, Chem. Rev., 1997,
97, 2341–2372; (b) V. K. Aggarwal and C. L. Winn, Acc.
Chem. Res., 2004, 37, 611–620; (c) M. Jia and S. Ma, Angew.
Chem., Int. Ed., 2016, 55, 9134–9166; (d) J. D. Neuhaus,
R. Oost, J. Merad and N. Maulide, Top. Curr. Chem., 2018,
376, 15; (e) D. Kaiser, I. Klose, R. Oost, J. Neuhaus and
N. Maulide, Chem. Rev., 2019, 119, 8701–8780.
2 (a) E. J. Corey and M. Chaykovsky, J. Am. Chem. Soc., 1962,
84, 867–868; (b) E. J. Corey and M. Chaykovsky, J. Am.
Chem. Soc., 1965, 87, 1353–1364; (c) V. K. Aggarwal,
E. Alonso, G. Hynd, K. M. Lydon, M. J. Palmer,
9 (a) S. Kramer and T. Skrydstrup, Angew. Chem., Int. Ed.,
2012, 51, 4681–4684; (b) J. Vaitla, A. Bayer and
K. H. Hopmann, Angew. Chem., Int. Ed., 2018, 57, 16180–
2960 | Green Chem., 2021, 23, 2956–2961
This journal is © The Royal Society of Chemistry 2021