Organic Letters
Letter
Ousmer, M.; Chang, J.; Chai, D. Oxidative Amidation of Phenols
through the Use of Hypervalent Iodine Reagents: Development and
Applications. Synthesis 2007, 2007, 3759−3772.
1711−1715. (b) Kloeckner, U.; Finkbeiner, P.; Nachtsheim, B. J.
Iodide-Catalyzed Halocyclization/Cycloaddition/Elimination Cas-
cade Reaction. J. Org. Chem. 2013, 78, 2751−2756. (c) Yoshimura,
A.; Zhu, C.; Middleton, K. R.; Todora, A. D.; Kastern, B. J.; Maskaev,
A. V.; Zhdankin, V. V. Hypoiodite Mediated Synthesis of Isoxazolines
from Aldoximes and Alkenes using Catalytic KI and Oxone as the
Terminal Oxidant. Chem. Commun. 2013, 49, 4800−4802. (d) Xu,
W.; Kloeckner, U.; Nachtsheim, B. J. Direct Synthesis of 2,5-
Disubstituted Oxazoles through an Iodine-Catalyzed Decarboxylative
Domino Reaction. J. Org. Chem. 2013, 78, 6065−6074. (e) Swamy,
P.; Reddy, M. M.; Naresh, M.; Kumar, M. A.; Srujana, K.; Durgaiah,
C.; Narender, N. Hypoiodite-Catalyzed Regioselective Oxidation of
Alkenes: An Expeditious Access to Aldehydes in Aqueous Micellar
Media. Adv. Synth. Catal. 2015, 357, 1125−1130. (f) Swamy, P.;
Naresh, M.; Reddy, M. M.; Srujana, K.; Durgaiah, C.; Prabhakar, S.;
Narender, N. Hypoiodous acid-Catalyzed Regioselective Geminal
Addition of Methanol to Vinylarenes: Synthesis of anti-Markovnikov
Methyl Acetals. RSC Adv. 2015, 5, 73732−73736.
(12) Uyanik, M.; Kato, T.; Sahara, N.; Katade, O.; Ishihara, K. High-
Performance Ammonium Hypoiodite/Oxone Catalysis for Enantio-
selective Oxidative Dearomatization of Arenols. ACS Catal. 2019, 9,
11619−11626.
(13) Uyanik, M.; Sasakura, N.; Kaneko, E.; Ohori, K.; Ishihara, K.
Chiral Ammonium Hypoiodite-catalyzed Enantioselective Oxidative
Dearomatization of 1-Naphthols Using Hydrogen Peroxide. Chem.
Lett. 2015, 44, 179−181.
(14) CRC Handbook of Chemistry and Physics, 85th ed.; Lide, D. R.,
Ed.; CRC Press: Boca Raton, FL, 2005. All of the pKa values are given
in H2O.
(5) For examples, see: (a) Heilmann, J.; Mayr, S.; Brun, R.; Rali, T.;
Sticher, O. Antiprotozoal Activity and Cytotoxicity of Novel 1,7-
Dioxadispiro[5.1.5.2]pentadeca-9,12-dien-11-one Derivatives from
Amomum aculeatum. Helv. Chim. Acta 2000, 83, 2939−2945.
(b) Macías, F. A.; Galindo, J. L. G.; Varela, R. M.; Torres, A.;
Molinillo, J. M. G.; Fronczek, F. R. Heliespirones B and C: Two New
Plant Heliespiranes with a Novel Spiro Heterocyclic Sesquiterpene
Skeleton. Org. Lett. 2006, 8, 4513−4516. (c) Wilson, M. C.; Nam, S.-
J.; Gulder, T. A. M.; Kauffman, C. A.; Jensen, P. R.; Fenical, W.;
Moore, B. S. Structure and Biosynthesis of the Marine Streptomycete
Ansamycin Ansalactam A and Its Distinctive Branched Chain
Polyketide Extender Unit. J. Am. Chem. Soc. 2011, 133, 1971−1977.
(d) Ma, S.-G.; Gao, R.-M.; Li, Y.-H.; Jiang, J.-D.; Gong, N.-B.; Li, L.;
Lu, Y.; Tang, W.-Z.; Liu, Y.-B.; Qu, J.; Lu, H.-N.; Li, Y.; Yu, S.-S.
̈ ̈
Antiviral Spirooliganones A and B with Unprecedented Skeletons
from the Roots of Illicium oligandrum. Org. Lett. 2013, 15, 4450−
4453.
(6) (a) Sarkar, D.; Ghosh, M. K.; Rout, N. Phenyl Trimethyl
Ammonium Tribromide Mediated Robust One-Pot Synthesis of
Spiro-oxacycles − an Economic Route − Stereoselective Synthesis of
Oxaspirohexacyclodieneones. Org. Biomol. Chem. 2016, 14, 7883−
7898. (b) Sarkar, D.; Ghosh, M. K.; Rout, N.; Kuila, P. “A Jack of
Trio”Robust One-Pot Metal Free Oxidative Amination, Azidation
and Peroxidation of Phenols. New J. Chem. 2017, 41, 3715−3718.
(c) Sarkar, D.; Kuila, P.; Sood, D. Controlling Stereoselectivity in
Tribromide Mediated Oxidative Dearomatisations − Synthesis of
Selective Spirofuranonaphthalones. Eur. J. Org. Chem. 2019, 2019,
5894−5904.
(15) Shirakawa, S.; Liu, S.; Kaneko, S.; Kumatabara, Y.; Fukuda, A.;
Omagari, Y.; Maruoka, K. Tetraalkylammonium Salts as Hydrogen-
Bonding Catalysts. Angew. Chem., Int. Ed. 2015, 54, 15767−15770.
(16) (a) Cavallo, G.; Metrangolo, P.; Milani, R.; Pilati, T.; Priimagi,
A.; Resnati, G.; Terraneo, G. The Halogen Bond. Chem. Rev. 2016,
116, 2478−2601. (b) Breugst, M.; Detmar, E.; von der Heiden, D.
Origin of the Catalytic Effects of Molecular Iodine: A Computational
Analysis. ACS Catal. 2016, 6, 3203−3212.
(7) Sarkar, D.; Rout, N. Ruthenium(VIII)-Catalyzed ipso-
Dearomative Spiro-Etherification and Spiro-Amidation of Phenols.
Org. Lett. 2019, 21, 4132−4136.
(8) (a) Jain, N.; Ciufolini, M. A. Oxidative Amidation in the
Naphthalene Series. Synlett 2015, 26, 631−634. (b) Jain, N.; Xu, S.;
Ciufolini, M. A. Asymmetric Oxidative Cycloetherification of
Naphtholic Alcohols. Chem. - Eur. J. 2017, 23, 4542−4546. (c) Jain,
N.; Ciufolini, M. A. Oxidative Kinetic Resolution of Some Naphtholic
Alcohols Mediated by a Chiral Hypervalent Iodine Reagent. Synthesis
2018, 50, 3322−3332. (d) Jain, N.; Hein, J. E.; Ciufolini, M. A.
Oxidative Cyclization of Naphtholic Sulfonamides Mediated by a
Chiral Hypervalent Iodine Reagent: Asymmetric Synthesis versus
Resolution. Synlett 2019, 30, 1222−1227.
́
(18) Milenkovic, M. C.; Stanisavljev, D. R. Role of Free Radicals in
Modeling the Iodide−Peroxide Reaction Mechanism. J. Phys. Chem. A
2012, 116, 5541−5548.
́
́
(19) Gagnepain, J.; Mereau, R.; Dejugnac, D.; Leger, J.-M.; Castet,
́
F.; Deffieux, D.; Pouysegu, L.; Quideau, S. Regio- and Stereo-
selectivities in Diels−Alder Cyclodimerizations of Orthoquinonoid
Cyclohexa-2,4-dienones. Tetrahedron 2007, 63, 6493−6505.
(20) (a) Kiyokawa, K.; Kosaka, T.; Minakata, S. Metal-Free
Aziridination of Styrene Derivatives with Iminoiodinane Catalyzed
by a Combination of Iodine and Ammonium Iodide. Org. Lett. 2013,
15, 4858−4861. (b) Wappes, E. A.; Fosu, S. C.; Chopko, T. C.;
Nagib, D. A. Triiodide-Mediated δ-Amination of Secondary C−H
Bonds. Angew. Chem., Int. Ed. 2016, 55, 9974−9978.
(9) (a) Uyanik, M.; Okamoto, H.; Yasui, T.; Ishihara, K. Quaternary
Ammonium (Hypo)iodite Catalysis for Enantioselective Oxidative
Cycloetherification. Science 2010, 328, 1376−1379. (b) Uyanik, M.;
Hayashi, H.; Ishihara, K. High-Turnover Hypoiodite Catalysis for
Asymmetric Synthesis of Tocopherols. Science 2014, 345, 291−294.
(c) Uyanik, M.; Ishihara, K. Catalysis with In Situ-Generated
(Hypo)iodite Ions for Oxidative Coupling Reactions. ChemCatChem
2012, 4, 177−185. (d) Finkbeiner, P.; Nachtsheim, B. J. Iodine in
Modern Oxidation Catalysis. Synthesis 2013, 45, 979−999. (e) Wu,
X.-F.; Gong, J.-L.; Qi, X. A Powerful Combination: Recent
Achievements on Using TBAI and TBHP as Oxidation System.
Org. Biomol. Chem. 2014, 12, 5807−5817. (f) Chen, R.; Chen, J.;
Zhang, J.; Wan, X. Combination of Tetrabutylammonium Iodide
(TBAI) with tert-Butyl Hydroperoxide (TBHP): An Efficient
Transition-Metal-Free System to Construct Various Chemical
Bonds. Chem. Rec. 2018, 18, 1292.
(10) Hussain, H.; Green, I. R.; Ahmed, I. Journey Describing
Applications of Oxone in Synthetic Chemistry. Chem. Rev. 2013, 113,
3329−3371.
(11) Oxone has been used as an oxidant for iodine-based oxidation
catalysis without considering its distinct behavior on the catalytic
mechanism. See: (a) Kumar, M. A.; Swamy, P.; Naresh, M.; Reddy,
M. M.; Rohitha, C. N.; Prabhakar, S.; Sarma, A. V. S.; Kumar, J. R. P.;
Narender, N. Iodine-Catalyzed Tandem Synthesis of Terminal Acetals
and Glycol Mono Esters from Olefins. Chem. Commun. 2013, 49,
́
́
(21) Lente, G.; Kalmar, J.; Baranyai, Z.; Kun, A.; Kek, I.; Bajusz, D.;
́
́
́
Takacs, M.; Veres, L.; Fabian, I. One- Versus Two-Electron Oxidation
with Peroxomonosulfate Ion: Reactions with Iron(II), Vanadium(IV),
Halide Ions, and Photoreaction with Cerium(III). Inorg. Chem. 2009,
48, 1763−1773.
(22) (a) Yi, J.-C.; Wu, Z.-J.; You, S.-L. Copper-Catalyzed Oxidative
Dearomatization of 2-Naphthols via Etherification. Chin. J. Chem.
2019, 37, 903−908. (b) Uyanik, M.; Nishioka, K.; Ishihara, K.
Ammonium Hypoiodite-Catalyzed Peroxidative Dearomatization of
Phenols. Heterocycles 2017, 95, 1132−1147.
(23) Uyanik, M.; Mutsuga, T.; Ishihara, K. 4,5-Dimethyl-2-
Iodoxybenzenesulfonic Acid Catalyzed Site-Selective Oxidation of 2-
Substituted Phenols to 1,2-Quinols. Angew. Chem., Int. Ed. 2017, 56,
3956−3960.
E
Org. Lett. XXXX, XXX, XXX−XXX