Inorganic Chemistry
ARTICLE
(21) Dietrich, B. L.; Goldberg, K. I.; Heinekey, D. M.; Autrey, T.;
Linehan, J. C. Inorg. Chem. 2008, 47, 8583.
(56) Aversa, M. C.; Giannetto, P. J. Chem. Soc. Perkin Trans. 2
1984, 81.
(22) Dallanegra, R.; Robertson, A. P. M.; Chaplin, A. B.; Manners, I.;
Weller, A. S. Chem. Commun. 2011, 3763.
(23) Zahmakiran, M.; Ozkar, S. Inorg. Chem. 2009, 48, 8955.
(24) Tang, C. Y.; Thompson, A. L.; Aldridge, S. J. Am. Chem. Soc.
2010, 132, 10578.
(25) Shrestha, R. P.; Diyabalanage, H. V. K.; Semelsberger, T. A.;
Ott, K. C.; Burrell, A. K. Int. J. Hydrogen Energy 2009, 34, 2616.
(26) Hansmann, M. M.; Melen, R. L.; Wright, D. S. Chem. Sci. 2011,
2, 1554.
(57) Couturier, M.; Tucker, J. L.; Andresen, B. M.; Dubꢁe, P.; Negri,
J. T. Org. Lett. 2001, 3, 465.
€
(58) Yao, C. F.; Zhuang, L.; Cao, Y. L.; Ai, X. P.; Yang, H. X. Int. J.
Hydrogen Energ. 2008, 33, 2462.
(59) The peaks within the 11B NMR spectra were quantified by the
addition of a known quantity of B(OiPr)3 to filtered NMR samples (See
ref 19) and integrating versus the resulting peak (δB +18 ppm). The
borate could not be added directly to the reaction mixture as it was found
to interact with skeletal Ni, reducing its dehydrogenation activity.
(60) Freel, J.; Pieters, W. J. M.; Anderson, R. B. J. Catal. 1969, 14,
247.
(27) Cowley, H. J.; Holt, M. S.; Melen, R. L.; Rawson, J. M.; Wright,
D. S. Chem. Commun. 2011, 2682.
(28) Clark, T. J.; Russell, C. A.; Manners, I. J. Am. Chem. Soc. 2006,
128, 9582.
(61) Freel, J.; Robertson, S. D.; Anderson, R. B. J. Catal. 1970, 18,
243.
(29) Vogt, M.; deBruin, B.; Berke, H.; Trincado, M.; Gr€utzmacher, H.
(62) AAS analysis: 50:50 wt % Ni/Al alloy, as purchased (Sigma-
Chem. Sci., 2011, 2, 723.
Aldrich): Ni, 53.48%; Al, 45.64%; NiT20: Ni, 89.34%; Al, 3.62%; NiT50
:
(30) A catalytic system based upon a metalꢀorganic framework
containing active Ni centers has also been reported for ammoniaꢀ
borane dehydrogenation, although the catalysis in this case occurs in the
solid state at 80 °C: Li, Y.; Song, P.; Zheng, J.; Li, X. Chem.—Eur. J. 2010,
16, 10887.
(31) Kawano, Y.; Uruichi, M.; Shimoi, M.; Taki, S.; Kawaguchi, T.;
Kakizawa, T.; Ogino, H. J. Am. Chem. Soc. 2009, 131, 14946.
(32) An FeB nanoalloy has also been employed in the catalytic
dehydrogenation of ammonia-borane in the solid state at elevated
temperatures:He, T.; Wang, J.; Wu, G.; Kim, H.; Proffen, T.; Wu, A.;
Li, W.; Liu, T.; Xiong, Z.; Wu, C.; Chu, H.; Guo, J.; Autrey, T.; Zhang, T.;
Chen, P. Chem.—Eur. J. 2010, 16, 12814.
(33) Miller, A. J. M.; Bercaw, J. E. Chem. Commun. 2010, 1709.
(34) Whittell, G. R.; Balmond, E. I.; Robertson, A. P. M.; Patra, S. K.;
Haddow, M. F.; Manners, I. Eur. J. Inorg. Chem. 2010, 3967.
(35) Chapman, A. M.; Haddow, M. F.; Wass, D. F. J. Am. Chem. Soc.
2011, 133, 8826.
(36) Haaland, A. Angew. Chem., Int. Ed. 1989, 28, 992.
(37) G€ottker-Schnetmann, I.; White, P. S.; Brookhart, M. Organo-
metallics 2004, 23, 1766.
Ni, 87.45%; Al, 7.95%; NiT100: Ni, 85.15%; Al, 5.53%. We assign the
missing mass in each sample to oxygen, likely to be present initially as a
surface oxide following dissolution of the samples in aqua regia in air.
(63) Kishida, S.; Teranishi, S. J. Catal. 1968, 12, 90.
(64) Widegren, J. A.; Finke, R. G. J. Mol. Catal. A: Chem. 2003,
198, 317.
(65) Jaska, C. A.; Manners, I. J. Am. Chem. Soc. 2004, 126, 9776.
(66) Widegren, J. A.; Bennett, M. A.; Finke, R. G. J. Am. Chem. Soc.
2003, 125, 10301.
(67) Anton, D. R.; Crabtree, R. H. Organometallics 1983, 2, 855.
(68) Whitesides, G. M.; Hackett, M.; Brainard, R. L.; Lavalleye, J. P.
P. M.; Sowinski, A. F.; Izumi, A. N.; Moore, S. S.; Brown, D. W.; Staudt,
E. M. Organometallics 1985, 4, 1819.
(69) Stevens, C. J.; Dallanegra, R.; Chaplin, A. B.; Weller, A. S.;
MacGregor, S. A.; Ward, B.; McKay, D.; Alcaraz, G.; Sabo-Etienne, S.
Chem.—Eur. J. 2011, 17, 3011.
(70) Liptrot, D. J.; Hill, M. S.; Mahon, M. F.; MacDougall, D. J.
Chem.—Eur. J. 2010, 16, 8508.
(71) Chen, Y.; Fulton, J. L.; Linehan, J. C.; Autrey, T. J. Am. Chem.
Soc. 2005, 127, 3254.
(38) Denney, M. C.; Pons, V.; Hebden, T. J.; Heinekey, D. M.;
Goldberg, K. I. J. Am. Chem. Soc. 2006, 128, 12048.
(39) Clapham, S. E.; Hadzovic, A.; Morris, R. H. Coord. Chem. Rev.
2004, 248, 2201.
(40) Li, T.; Churlaud, R.; Lough, A. J.; Abdur-Rashid, K.; Morris,
R. H. Organometallics 2004, 23, 6239.
(41) Abdur-Rashid, K.; Clapham, S. E.; Hadzovic, A.; Harvey, J. N.;
Lough, A. J.; Morris, R. H. J. Am. Chem. Soc. 2002, 124, 15104.
(42) Raney, M. Method of Preparing Catalytic Material, U.S.
1563587, 1925.
(72) Pons, V.; Baker, R. T.; Szymczak, N. K.; Heldebrant, D. J.;
Linehan, J. C.; Matus, M. H.; Grant, D. J.; Dixon, D. A. Chem. Commun.
2008, 6597.
(73) Paul, A.; Musgrave, C. B. Angew. Chem., Int. Ed. 2007, 46, 8153.
(74) Yang, X.; Hall, M. B. J. Am. Chem. Soc. 2008, 130, 1798.
(75) Zimmerman, P. M.; Paul, A.; Zhang, Z.; Musgrave, C. B. Angew.
Chem. Int Ed. 2009, 48, 2201.
(76) Ryschkewitsch, G. E.; Wiggins, J. W. Inorg. Chem. 1970, 9, 314.
(77) Douglas, T. M.; Chaplin, A. B.; Weller, A. S.; Yang, X.; Hall,
M. B. J. Am. Chem. Soc. 2009, 131, 15440.
(43) Raney, M. Method of Producing Finely Divided Nickel, U.S.
1628190, 1927.
(44) Smith, A. J.; Trimm, D. L. Annu. Rev. Mater. Res. 2005, 35, 127.
(45) Fouilloux, P. Appl. Catal. 1983, 8, 1.
(46) Ertl, G.; Kn€ozinger, H.; Weitkamp, J. Preparation of Solid
Catalysts; Wiley-VCH: Weinheim, Germany, 1999.
(47) Jones, W. H.; Benning, W. F.; Davis, P.; Mulvey, D. M.; Pollak,
P. I.; Schaeffer, J. C.; Tull, R.; Weinstock, L. M. Ann. N.Y. Acad. Sci. 1969,
158, 471.
(48) Onuoha, N. I.; Wainwright, M. S. Chem. Eng. Commun. 1984, 29, 1.
(49) Tomsett, A. D.; Wainwright, M. S.; Young, D. J. Appl. Catal.
1984, 12, 43.
(78) Luo, Y.; Ohno, K. Organometallics 2007, 26, 3597.
(79) N€oth, H.; Thomas, S. Eur. J. Inorg. Chem. 1999, 1373.
(80) Pasumansky, L.; Haddenham, D.; Clary, J. W.; Fisher, G. B.;
Goralski, C. T.; Singaram, B. J. Org. Chem. 2008, 73, 1898.
(81) Baldwin, R. A.; Washburn, R. M. J. Org. Chem. 1961, 26, 3549.
(82) Brown, H. C.; Schlesinger, H. I.; Cardon, S. Z. J. Am. Chem. Soc.
1942, 64, 325.
(83) Jaska, C. A.; Clark, T. J.; Clendenning, S. B.; Grozea, D.; Turak,
A.; Lu, Z.-H.; Manners, I. J. Am. Chem. Soc. 2005, 127, 5116.
(84) Flores-Segura, H.; Torres, L. A. Struct. Chem. 1997, 8, 227.
(85) Staubitz, A.; Besora, M.; Harvey, J. N.; Manners, I. Inorg. Chem.
2008, 47, 5910.
(50) Ma, L.; Tran, T.; Wainwright, M. S. Top. Catal. 2003, 22, 287.
(51) Reeve, W.; Christian, J. J. Am. Chem. Soc. 1956, 78, 860.
(52) Johnston, W. D.; Heikes, R. R.; Petrolo, J. J. Am. Chem. Soc.
1957, 79, 5388.
(86) Jaska, C. A.; Temple, K.; Lough, A. J.; Manners, I. Chem.
Commun. 2001, 962.
(87) Dallanegra, R.; Chaplin, A. B.; Tsim, J.; Weller, A. S. Chem.
Commun. 2010, 3092.
(53) Pavlic, A. A.; Adkins, H. J. Am. Chem. Soc. 1946, 68, 1471.
(54) Franck-Neumann, M.; Geoffroy, P.; Bissinger, P.; Adelaide, S.
Tetrahedron Lett. 2001, 42, 6401.
(55) Gallezot, P.; Cerino, P. J.; Blanc, B.; Flꢀeche, G.; Fuertes, P.
J. Catal. 1994, 146, 93.
(88) Smythe, N. C.; Gordon, J. C. Eur. J. Inorg. Chem. 2010, 509.
(89) This peak, based on integration versus the remaining peaks of
the trimer, may potentially also contain some contribution from its
isomeric form, [NH2ꢀBH2]3, which has been reported at an almost
identical similar chemical shift: Shaw, W. J.; Linehan, J. C.; Szymczak,
12690
dx.doi.org/10.1021/ic201809g |Inorg. Chem. 2011, 50, 12680–12691