M. Fujita, T. Seki / Bioorg. Med. Chem. Lett. 12 (2002) 1383–1386
1385
Table 2. PAF antagonist and TxA2 synthase inhibitory activities ofcompounds 3a and 3b
Entrya
Product
R2
X
IC50 (mM)
ED50 (mg/kg, iv)
ED50 (mg/kg, po)
PAF antagonistb TxA2 synthasec PAF antagonistd TxA2 synthasee PAF antagonistd TxA2 synthasee
7
8
11
9
3b
3b
3a
H
NO
0.139
0.041
0.190
0.047
0.036
0.029
NT
0.062
0.069
0.067
0.060
>1.000
NT
0.7
0.2
0.8
0.2
0.02
0.1
NT
NT
0.1
0.1
0.1
0.1
NT
NT
0.02
0.01
>10.0
>10.0
>10.0
>10.0
>10.0
>10.0
>10.0
>10.0
NT
NT
0.1
0.05
Me NO
NO
Me NO
H
3a
(Æ)-E6123f
UK74505g
Ozagrel
Isbogrelh
0.025
1.55
NT
NT
0.024
0.0009
NT
aCorresponded to entry in Table 1.
bInhibition ofthe PAF-induced platelet aggregation in rabbit platelet rich plasma(PRP). This was performed according to the method ofTerashita
et al. with slight modification.9
cInhibition ofTxB production by incubating prostaglandin H2(PGH2) with human platelet microsomes. This was performed according to the
2
method ofTerashita et al. with slight modification. 10
dActivity in vivo was demonstrated by the ability to protect mice from the lethal effects ofan injection ofPAF. The ED 50 values represent the dose
reduced mortality by 50%. This was performed according to the method of Cooper et al. with slight modification.11
eInhibition ofserum TxB 2 production in the rats. This was performed according to the method of Terashita et al. with slight modification.10
fSee ref12.
gSee ref11.
hSee ref13.
Muller, T. H.; Weisenberger, H. J. Med. Chem. 1994, 37, 26.
(d) Ackerley, N.; Brewster, A. G.; Brown, G. R.; Clarke, D. S.;
Foubister, A. J.; Griffin, S. J.; Hudson, J. A.; Smithers, M. J.;
Whittamore, P. R. O. J. Med. Chem. 1995, 38, 1608.
2. Fujita, M.; Seki, T.; Inada, H.; Shimizu, K.; Takahama, A.;
Sano, T. Bioorg. Med. Chem. Lett. 2002, 12, 341.
Table 2 summarizes PAF antagonist and TxA2 synthase
inhibitory activities. Compounds 3a and 3b synthesized
by entries 7–9 and 11 in Table 1 were tested in vitro and
in/ex vivo. As the result, 3a and 3b showed little differ-
ence on activities. However, in a PAF-induced death
assay after intravenous administration in mice, the
action time ofcompounds 3b were quarter ofcom-
pounds 3a, respectively (data not shown). From the
result previously reported,3 these compounds appeared
to be not parted in the diazepine and the ester in vivo.
3. Fujita, M.; Seki, T.; Inada, H.; Shimizu, K.; Takahama, A.;
Sano, T. Bioorg. Med. Chem. Lett. 2002, 12, 771.
4. (a) Braquet, P.; Paubert-Braquet, M.; Koltai, M.; Bour-
gain, R.; Bussolino, F.; Hosford, D. Trends Pharm. Sci. 1989,
10, 23. (b) Sanchez-Crespo, M. Drug News Perspect. 1993, 6,
78. (c) Page, C. P. J. Allergy Clin. Immunol. 1988, 81, 144. (d)
Barnes, P. J. J. Allergy Clin. Immunol. 1988, 81, 152.
In conclusion, we have developed an efficient method
for the synthesis of carbamates 3b in good yield by uti-
lizing esters 1, 2.4 equiv ofK CO3 and 1.0 equiv of18-
2
5. (a) Hirsh, P. D.; Hillis, L. D.; Campbell, W. B.; Firth, B. G.;
Willerson, J. T. N. Engl. J. Med. 1981, 304, 684. (b) Oates, J.;
Fitzgerald, G.; Branch, R.; Jackson, E.; Knapp, H.; Roberts,
L. N. Engl. J. Med. 1988, 319, 689. (c) Fitzgerald, D. J.; Roy,
L.; Catella, F.; Fitzgerald, G. A. N. Engl. J. Med. 1986, 315,
983. (d) Fiddler, G.; Lumley, P. Circulation 1990, 81, 69.
6. For the preparation ofdiazepines 2, see: Miyazawa, S.;
Okano, K.; Shimomura, N.; Clark, R. S. J.; Kawahara, T.;
Asano, O.; Yoshimura, H.; Miyamoto, M.; Sakuma, Y.;
Muramoto, K.; Obaishi, H.; Harada, K.; Kajima, T.;
Yamada, K.; Tsunoda, H.; Katayama, S.; Abe, S.; Asakawa,
N.; Souda, S.; Horie, T.; Sato, T.; Machida, Y.; Katayama,
K.; Yamatsu, I. Chem. Pharm. Bull. 1991, 39, 3215.
crown-6. Moreover, the hydroxyl substituted ester was
recovered in good yield, and could be recycled. Hence,
this method would become one tool for bulk synthesis
ofthe compound or carbamates. Extension ofthis
methodology to other compounds is under investigation
in order to define the scope ofthis synthesis ofcarba-
mates. On the other hand, carbamates 3b indicated excel-
lent dual activity by intravenous administration. Further
synthetic studies and detailed biological investigations
including the study ofdiastereoisomers are currently in
progress and will be reported elsewhere.
7. Yoshida, Z.; Yoneda, S.; Nakamura, A.; Fukui, K. Kogyo
Kagaku Zasshi 1966, 69, 52.
8. Typical procedure for the synthesis of carbamates;
To a solution of 1a (543 mg, 1.25 mmol) in DMF (5 mL) was
added K2CO3 (173 mg, 1.25 mmol) followed by 18-crown-6
(165 mg, 0.62 mmol) at room temperature. After stirring for
30 min at room temperature, 2a (200 mg, 0.52 mol) was added
and the mixture was stirred at 70 ꢀC for 2 h. After cooling and
conventional work-up, the mixture was subjected to chroma-
tography to yield 3b with R2=Me as an orange foam (367 mg,
Acknowledgements
We thank Mr. Masashi Yano for HPLC and mass spectral
data, and Mr. Susumu Kanaya for biological data.
1
References and Notes
92%). 3b: H NMR (300 MHz, CDCl3): d (ppm) 1.16 (3H, t,
J=7.2 Hz), 1.50–1.81 (5H, m), 1.90–2.15 (1H, m), 2.04 (3H, d,
J=6.9 Hz), 2.24 (2H, t, J=6.9 Hz), 2.60 (3H, s), 3.14 (1H,
brs), 3.55–4.00 (1H, m), 4.03 (2H, q, J=7.2 Hz), 4.14 (2H, t,
J=6.0 Hz), 4.21 (1H, dd, J=6.6, 13.5 Hz), 4.39 (1H, brd,
J=16.8 Hz), 4.78 (1H, brd, J=16.8 Hz), 5.05 (2H, brs) 7.10–
7.50 (9H, m), 7.64, 7.78 (total 1H, each d, J=8.1 Hz), 8.51 (1H,
1. (a) Campbell, I. B.; Collington, E. W.; Finch, H.; Hayes, R.;
Lumley, P.; Mills, K.; Pike, N. B.; Robertson, G. M.; Watts, I. S.
Bioorg. Med. Chem. Lett. 1991, 1, 699. (b) Hoet, B.; Falcon, C.;
De Rey, S.; Arnout, J.; Deckmyn, H.; Vermylen, J. Blood
1990, 75, 646. (c) Soyka, R.; Heckel, A.; Nickl, J.; Eisert, W.;