Page 3 of 4
ChemComm
DOI: 10.1039/C5CC00118H
undergoes Hꢀmigration and Oꢀacylation to afford desired product 20 obtained in high yields with excellent enantioselectivities.
3a with the regeneration of the catalyst. 13
Notably, the C1ꢀsymmetric biarylꢀsaturated imidazolium, as a
robust organocatalyst, has shown powerful potential for the
activation of previously unavailable reactions and inactive
substrates. Further studies and applications of the novel NHC
25 catalyst are currently underway.
We are grateful to the NSFC (21172097, 21202070 and
21372105), the International S&T Cooperation Program of China
(2013DFR70580), the National Natural Science Foundation from
Gansu Province of China (no. 1204WCGA015), and the “111”
30 program from MOE of P. R. China.
Notes and references
1. For seclected examples, see: (a) A. T. Biju, N. Kuhl and F. Glorius,
Acc. Chem. Res., 2011, 44, 1182; (b) D. T. Cohen and K. A. Scheidt,
Chem. Sci., 2012, 3, 53; (c) Z, Du and Z, Shao, Chem. Soc. Rev.,
35
40
45
50
55
60
65
70
75
80
2013, 42, 1337; (d) G. Masson, C. Lalli, M. Benohoud and G.
Dagousset, Chem. Soc. Rev., 2013, 42, 902; (e) I. D. Jurberg, I.
Chatterjee, R. Tannerta and P. Melchiorre, Chem. Commun., 2013,
49, 4869; (f) Y. C. Fan and O. Kwon, Chem. Commun., 2013, 49,
11588; (g) M. T. Hovey, C. T. Check, A. F. Sipher and K. A. Scheidt,
Angew. Chem. Int. Ed., 2014, 53, 9603.
Fig. 2 Xꢀray crystal structure of compound 3v.
5k
O
base
Ph
EtO2
O
O
O
Ph
Ph
N
2. For αꢀalky substitueted α,βꢀdisubstituted enals, see: (a) S. Karlsson
and H.ꢀE. Högberg, Eur. J. Org. Chem., 2003, 2782;(b) H. D. King,
Z. Meng, D. Denhart, R. Mattson, R. Kimura, D. Wu, Q. Gao and J.
E. Macor, Org. Lett., 2005, 7, 3437; (c) P. Galzerano, F. Pesciaioli,
A. Mazzanti, G. Bartoli and P. Melchiorre, Angew. Chem. Int. Ed.,
2009, 48, 7892; (d) A. Ma and D. Ma, Org. Lett., 2010, 12, 3634; (e)
O. Lifchits, C. M. Reisinger and B. List, J. Am. Chem. Soc., 2010,
132, 10227; (f) P. Melchiorre, Angew. Chem. Int. Ed., 2012, 51,
9748; (g) A. Pou and A. Moyano, Eur. J. Org. Chem., 2013, 3103;
(h) O. Lifchits, M. Mahlau, C. M. Reisinger, A. Lee, C. Farès, I.
Polyak, G. Gopakumar, W. Thiel and B. List, J. Am. Chem. Soc.,
2013, 135, 6677; for αꢀbranched enones, see: (i) K. Nishide, M.
Ozeki, H. Kunishige, Y. Shigeta, P. K. Patra, Y. Hagimoto and M.
Node, Angew. Chem. Int. Ed., 2003, 42, 4515; (j) X. Tian, C.
Cassani, Y. Liu, A. Moran, A. Urakawa, P. Galzerano, E. Arceo and
P. Melchiorre, J. Am. Chem. Soc., 2011, 133, 17934; (k) A. T.
Davies, P. M. Pickett, A. M. Z. Slawin and A. D. Smith, ACS Catal.,
2014, 4, 2696.
C
EtO2C
H
N
Mes
Ph
CF3
3a
1a
O-acylation
CF3
[O]
CO2Et
Ar
N
O
Ar
O
Ar
N
O
N
Ph
N
Ph
N
Ph
CO2Et
steric
Ph
O
Ph
N
Ph
O
H
CO2Et
Ph
Mes
Ph
Mes
IV
Ph
Mes
congested
I
I-1
2a
H-migration
Si face
attack
CO2Et
Ph
Ar
N
O
Ar
N
O
Ph
N
N
O
OH
Ph
Ph
HO
Mes
H
CO2Et
II
O
Ph
Ph
Mes
III
tautomerization
5
Scheme 1 Proposed Reaction Mechanism
3.
(a) T. Kano, Y. Tanaka, K. Osawa, T. Yurino and K. Maruoka,
Chem. Commun., 2009, 1956; (b) A. Quintard, A. Lefranc and A.
Alexakis, Org. Lett., 2011, 13, 1540; (c) M. P. Sibi, J. Coulomb and
L. M. Stanley, Angew. Chem. Int. Ed., 2008, 47, 9913.
To further demonstrate the synthetic value of this oxidative
addition reaction, product 3a with a tetrasubstituted olefin moiety
was subjected to a mild epoxidation process. Gratifyingly, the
10 desired δꢀlactone epoxide 6a, a scaffold widely existed in
numerous biologically active compounds,14 was readily achieved
with moderate yield but excellent diastereoꢀ and
enantioselectivity (Scheme 2).
4. For selected examples, see: (a) S. D. Sarkar and A. Studer, Angew.
Chem. Int. Ed., 2010, 49, 9266; (b) Z.ꢀQ. Rong, M.ꢀQ. Jia and S.ꢀL.
You, Org. Lett., 2011, 13, 4080; (c) X. Zhao, K. E. Ruhl and T.
Rovis, Angew. Chem. Int. Ed., 2012, 51, 12330; (d) J. Mo, X. Chen
and Y. R. Chi, J. Am. Chem. Soc., 2012, 134, 8810; (e) A. G.
Kravina, J. Mahatthananchai and J. W. Bode, Angew. Chem. Int. Ed.,
2012, 51, 9433; (f) E. G. Delany, C.ꢀL. Fagan, S. Gundala, A. Mari,
T. Broja, K. Zeitler and S. J. Connon, Chem. Commun., 2013, 49,
6510; (g) J. Mo, L. Shen and Y. R. Chi, Angew. Chem. Int. Ed., 2013,
52, 8588; (h) Z. Fu, J. Xu, T. Zhu, W. W. Y. Leong and Y. R. Chi,
Nat. Chem., 2013, 5, 839; (i) X. Chen, S. Yang, B.ꢀA. Song and Y. R.
Chi, Angew. Chem. Int. Ed., 2013, 52, 11134; (j) S. Bera, R. C.
Samanta, C. G. Daniliuc and A. Studer, Angew. Chem. Int. Ed., 2014,
53, 9622; (k) Z. Fu, K. Jiang, T. Zhu, J. Torres and Y. R. Chi, Angew.
Chem. Int. Ed., 2014, 53, 650; (l) O. Bortolini, C. Chiappe, M.
Fogagnolo, P. P. Giovannini, A. Massi, C. S. Pomellib and D. Ragno,
Chem. Commun., 2014, 50, 2008; (m) S. W. Youn, H. S. Song and J.
H. Park, Org. Lett., 2014, 16, 1028.
O
O
H
Ph
Ph
O
O
O
O
O
m-CPBA
EtO2C
CH2Cl2, 40 o
C
EtO2C
O
O
O
24 h
H
O
6a
3a
, 96% ee
, 62% yield
d.r. >20:1, 95% ee
sterol derivative
(bioactive)
15
Scheme 2 Synthetic Application of the Chiral δꢀlactone 3a
5. For reviews on the oxidative Nꢀheterocyclic carbenes catalysis, see:
(a) C. E. I. Knappke, A. Imami and A. J. Wangelin, ChemCatChem,
2012, 4, 937; (b) S. D. Sarkar, A. Biswas, R. C. Samanta and A.
Studer, Chem. Eur. J., 2013, 19, 4664.
In summary, we have developed a practical and efficient
approach for the activation of challenging αꢀaryl substituted α,βꢀ
disubstituted unsaturated aldehydes via a newly developed NHC
catalyst, and a series of fully substituted dihydropyranones were
This journal is © The Royal Society of Chemistry [year]
Journal Name, [year], [vol], 00–00 | 3