10.1002/anie.202012877
Angewandte Chemie International Edition
COMMUNICATION
M. Kudisch, C.-H. Lim, P. Thordarson, G. M. Miyake, J. Am. Chem. Soc.
2019, 141, 19479-19486.
oxidative addition reaction was run for 60 min in the dark.
Following addition of nitrosoanisole to the reaction solution and
stirring for 12 h without irradiation, the corresponding diarylamine
was obtained with 51% yield (Scheme 5, 4). These results support
a sequence involving oxidative addition of aryl halides to a photo-
generated Ni(I). Next, the formation of aryl radicals was probed.
[9] C. Li, Y. Kawamata, H. Nakamura, J. C. Vantourout, Z. Liu, Q. Hou, D. Bao,
J. T. Starr, J. Chen, M. Yan, P. S. Baran, Angew. Chem. Int. Ed. 2017, 56,
13088-13093; Angew. Chem. 2017, 131, 6457-6461.
[10] For nickel-catalyzed coupling of aryl halides with anilines, see: a) K.
Matsubara, K. Ueno, Y. Koga, K. Hara, J. Org. Chem. 2007, 72, 5069-
5076; b) C. Chen, L.-M. Yang, J. Org. Chem. 2007, 72, 6324-6327; c) C.
M. Lavoie, P. M. MacQueen, N. L. Rotta-Loria, R. S.Sawatzky, A.
Borzenko, A. J. Chisholm, B. K. V. Hargreaves, R. McDonald, M. J.
Ferguson, M. Stradiotto, Nat. Commun. 2016, 7, 11073; d) C. M. Lavoie,
M. Stradiotto, ACS Catal. 2018, 8, 7228-7250; e) J. S. K. Clark, M. J.
Ferguson, R. McDonald, M. Stradiotto, Angew. Chem. Int. Ed. 2019,
58, 6391-6395; Angew. Chem. 2019, 131, 6457-6461.
A
spin-trapping experiment was carried out by replacing
nitrosoanisole with N-tert-butyl- α -phenylnitrone (PBN) as a
radical trap under the identical reaction and operational conditions
as above (Scheme 5, 5). The spin adduct of aryl radical was
indeed observed by electron paramagnetic resonance (EPR)
spectroscopy (Figure S5) and is characterized by the hyperfine
coupling constants, which is in agreement with the literature
data.[24] These observations suggest that the nitro C-N coupling
involves a Ni(I)/N(III) cycle, with light required to generate the Ni(I)
species and the Ni(III) being responsible for the formation of aryl
radicals.
[11] K. Nepali, H.-Y. Lee, J.-P. Liou, J. Med. Chem. 2019, 62, 2851-2893.
[12] I. Sapountzis, P. Knochel, J. Am. Chem. Soc. 2002, 124, 9390-9391.
[13] J. Gui, C.-M. Pan, Y. Jin, T. Qin, J. C. Lo, B. J. Lee, S. H. Spergel, M. E.
Mertzman, W. J. Pitts, T. E. La Cruz, M. A. Schmidt, N. Darvatkar, S. R.
Natarajan, P. S Baran, Science 2015, 348, 886-891.
[14] a) C. W. Cheung, X. Hu, Nat. Commun. 2016, 7, 12494; b) C. W. Cheung,
M. L. Ploeger, X. Hu, Nat. Commun. 2017, 8, 14878; c) C. W. Cheung, M.
L. Ploege, X. Hu, Chem. Sci. 2018, 9, 655-659; d) C. W. Cheung, J.-A. Ma,
X. Hu, J. Am. Chem. Soc. 2018, 140, 6789-6792; e) M. L. Ploeger, A. Darꢁ,
J. N. Harvey, X. Hu, ACS Catal. 2020, 10, 2845-2854.
In conclusion, we have developed a new protocol that allows
for the amination of aryl halides with nitroarenes. The amination
is catalyzed by a Ni(II)-aryl complex under purple light irradiation
with a trialkyl amine as the base, requiring no external
photosensitizers. Starting with commercially available nitroarenes
as the amines source, this reaction avoids the pre-reduction of
nitroarenes to anilines, providing a step-economic strategy for
further developing the Buchwald-Hartwig C-N coupling reaction.
[15] M. Rauser, C. Ascheberg, M. Niggemann, Angew. Chem. Int. Ed. 2017, 56,
11570-11574; Angew. Chem. 2017, 129, 11728-11732.
[16] a)T.V. Nykaza, J. C. Cooper, G. Li, N. Mahieu, A. Ramirez, M. R. Luzung,
A. T. Radosevich, J. Am. Chem. Soc. 2018, 140, 15200-15205; b) G. Li, T.
V. Nykaza, J. C. Cooper, A. Ramirez, M. R. Luzung, A. T. Radosevich, J.
Am. Chem. Soc. 2020, 142, 6786-6799.
[17] S. Suárez-Pantiga, R. Hernández-Ruiz, C. Virumbrales, M. R. Pedrosa, R.
Sanz, Angew. Chem. Int. Ed. 2019, 58, 2129-2133; Angew. Chem. 2019,
131, 2151-2155.
Acknowledgements
[18] a) B. J. Shields, A. G. Doyle, J. Am. Chem. Soc. 2016, 138, 12719-12722;
b) B. J. Shields, B. Kudisch, G. D. Scholes, A. G. Doyle, J. Am. Chem.
Soc. 2018, 140, 3035-3039; c) L. Tian, N. A. Till, B. Kudisch, D. W. C.
MacMillan, G. D. Scholes, J. Am. Chem. Soc. 2020, 142, 4555-4559; d)
S. I. Ting, S. Garakyaraghi, C. M. Taliaferro, B. J. Shields, G. D. Scholes,
F. N. Castellano, A. G. Doyle, J. Am. Chem. Soc. 2020, 142, 5800-5810;
e) L. Yang, H.-H. Lu, C.-H. Lai, G. Li, W. Zhang, R. Cao, F. Liu, C. Wang,
J. Xiao, D. Xue, Angew. Chem. Int. Ed. 2020, 59, 12714-12719; Angew.
Chem. 2020, 132, 12814-12819.
This research is supported by the National Natural Science
Foundation of China (No. 21702130 and 21871171), the China
Postdoctoral Science Foundation (No. 2018M633452) and the
111 project (B14041).
Keywords: amination • aryl halides • nitroarenes • nickel
catalysis • aryl radicals
[19] a) J. M. Dennis, N. A. White, R. Y. Liu, S. L. Buchwald, J. Am. Chem. Soc.
2018, 140, 4721-4725; b) P. S. Engl, A. P. Häring, F. Berger, G. Berger, A.
Pérez-Bitrián, T. Ritter, J. Am. Chem. Soc. 2019, 141, 13346-13351.
[20] G. Chakraborti, S. Paladhi, T. Mandal, J. Dash, J. Org. Chem. 2018, 83,
7347-7359.
[1] a) J. Bariwal, E. V. Van der Eycken, Chem. Soc. Rev. 2013, 42, 9283-9303;
b) P. Ruiz-Castillo, S. L. Buchwald, Chem. Rev. 2016, 116, 12564-12649;
c) P. A. Forero-Cortés, A. M. Haydl, Org. Process Res. Dev. 2019, 23, 1478-
1483.
[21] The failure may be attributed to the high reactivity of nitroarenes bearing
electron-withdrawing groups, which could be easily converted into the
corresponding nitroso compounds and further transformed into
azoxybenzenes or azobenzenes (Y.-F. Chen, J. Chen, L.-J. Lin, G. J.
Chuang, J. Org. Chem. 2017, 82, 11626-11630). These intermediates
would not undergo an addition reaction with the aryl radicals generated in
the reaction system, and therefore would not form the expected
diarylamines. In our study, the corresponding anilines were obtained with
low isolated yields. For details see: Table S7.
[2] a) C. Sambiagio, S. P. Marsden, A. J. Blacker, P. C. McGowan, Chem. Soc.
Rev. 2014, 43, 3525-3550; b) S. Bhunia, G. G. Pawar, S. V. Kumar, Y. Jiang,
D. Ma, Angew. Chem. Int. Ed. 2017, 56, 16136-16179; Angew. Chem. 2017,
129, 16352-16397.
[3] D. G. Brown, J. Bostrꢀm, J. Med. Chem. 2016, 59, 4443-4458.
[4] E. C. Hughes, F. Veatch, V. Elersich, Ind. Eng. Chem. 1950, 42, 787-790.
[5] a) J. P. Wolfe, S. L. Buchwald, J. Am. Chem. Soc. 1997, 119, 6054-6058; b)
G. Manolikakes, A. Gavryushin, P. Knochel, J. Org. Chem. 2008, 73, 1429-
1434; c) N. H. Park, G. Teverovskiy, S. L. Buchwald, Org. Lett. 2014, 16,
220-223; d) S. Ge, R. A. Green, J. F. Hartwig, J. Am. Chem. Soc. 2014, 136,
1617-1627; e) S. D. Ramgren, A. L. Silberstein, Y. Yang, N. K. Garg, Angew.
Chem.Int. Ed. 2011, 50, 2171-2173.
[22] a) Z. Chen, Y. Jiang, L. Zhang, Y. Guo, D. Ma, J. Am. Chem. Soc. 2019,
141, 3541-3549; b) J. B. Sperry, K. E. P. Wiglesworth, I. Edmonds, P. Fiore,
D. C. Boyles, D. B. Damon, R. L. Dorow, E. L. P. Chekler, J. Langille, J.
W. Coe, Org. Process Res. Dev. 2014, 18, 1752-1758.
[6] M. Marín, R. J. Rama, M. C. Nicasio, Chem. Rec. 2016, 16, 1819-1832.
[7] R. Y. Liu, J. M. Dennis, S. L. Buchwald, J. Am. Chem. Soc. 2020, 142,
4500-4507.
[23] The formation of the nitroso intermediate may be assisted by photo-
promoted nickel catalysis.
[24] M. Kamimori, H. Sakuragi, T. Suehiro, K. Tokumaru, M. Yoshida, Bull.
Chem. Soc. Jpn. 1977, 50, 1195-1200.
[8] a) E. B. Corcoran, M. T. Pirnot, S. Lin, S. D. Dreher, D. A. DiRocco, I. W.
Davies, S. L. Buchwald, D. W. C. MacMillan, Science 2016, 353, 279-283;
b) M. S. Oderinde, N. H. Jones, A. Juneau, M. Frenette, B. Aquila, S.
Tentarelli, D. W. Robbins, J. W. Johannes, Angew. Chem. Int. Ed. 2016, 55,
13219-13223; Angew. Chem. 2016, 128, 13413-13417; c) C.-H. Lim, M.
Kudisch, B. Liu, G. M. Miyake, J. Am. Chem. Soc. 2018, 140, 7667-7673; d)
4
This article is protected by copyright. All rights reserved.