D. Sadhukhan et al. / Inorganica Chimica Acta 376 (2011) 245–254
253
[17] A. Das, G.M. Rosair, M.S. El Fallah, J. Ribas, S. Mitra, Inorg. Chem. 45 (2006)
3301.
4. Conclusion
[18] S.K. Dey, N. Mondal, R. Vicente, M.S. El Fallah, A. Escuer, X. Solans, M. Font-
Bardía, T. Matshusita, V. Gramlich, S. Mitra, Inorg. Chem. 43 (2004) 2427.
[19] R. Cortés, M.K. Urtiaga, L. Lezama, J.L. Pizarro, M.I. Arriortua, T.F. Rojo, Inorg.
Chem. 36 (1997) 5016.
In this paper, we have described the synthesis of a new dicyan-
amide bridged 2D polymeric complex of copper with a N2O2 donor
Schiff base ligand and its applications in magnetic and catalytic
fields. The antiferromagnetically coupled dicopper metal core with
Cu–Cu distance 2.974 Å resembles the active site of the plant en-
zyme catechol oxidase and show good catecholase activity. Thus
a relevant structure–function correlation has been established
among the structure of 1 and its magnetic and catalytic properties.
Though most of the activities of the complex are due to the metal
and the Schiff base ligand fragment the dicyanamide linker also
plays some crucial role to form a 2D undulating sheet like metal or-
ganic framework. Furthermore, the presence of vacant coordina-
tion sites on the square planar chelated Cu1 atom and specially
on the non-chelated Cu2 ion offers up to 1 + 3 bridging points (if
we assume penta-coordination for the copper(II) ions). The addi-
tion of a highly potentially bridging ligand as dca has led, as ex-
pected, to the formation of up to four dca bridges connecting the
vacant positions of the copper ions. This coordination mode gener-
ates a 2D coordination polymer with helical –Cu–dca–Cu– chains
that are further connected through double dca bridges to form a
2D layer with a hexagonal topology.
[20] A. Ray, G. Pilet, C.J. Gómez-García, S. Mitra, Polyhedron 28 (2009) 511.
ˇ ˇ
ˇ
[21] I. Potocnák, M. Dunaj-Jurco, D. Mikloš, M. Kabešová, L. Jäger, Acta Crystallogr.,
Sect. C 51 (1995) 600.
[22] D. Britton, Y.M. Chow, Acta Crystallogr., Sect. B 33 (1977) 607.
[23] J.L. Manson, C.R. Kmety, Q. Huang, J.W. Lynn, G.M. Bendele, S. Pagola, P.W.
Stephens, L.M. Liable-Sands, A.L. Reingold, A.J. Epstein, J.S. Miller, Chem. Mater.
10 (1998) 2552.
[24] Y.M. Chow, D. Britton, Acta Crystallogr., Sect. B 31 (1975) 1934.
[25] D. Ghoshal, A.D. Jana, T.K. Maji, G. Mostafa, Inorg. Chim. Acta 359 (2006) 690.
and references therein.
[26] S. Dalai, P.S. Mukherjee, E. Zangrando, N.R. Chaudhuri, New J. Chem. 26 (2002)
1185.
[27] S.R. Batten, K.S. Murray, Coord. Chem. Rev. 246 (2003) 103.
[28] J.S. Miller, J.L. Manson, Acc. Chem. Res. 34 (2001) 563.
[29] S. Banerjee, S. Sen, S. Basak, S. Mitra, D.L. Hughes, C. Desplanches, Inorg. Chim.
Acta 361 (2008) 2707.
[30] S. Sen, S. Mitra, D.L. Hughes, G. Rosair, C. Desplanches, Inorg. Chim. Acta 360
(2007) 4085.
[31] M. Biswas, G. Pilet, M.S. El Fallah, J. Ribas, S. Mitra, Inorg. Chim. Acta 361 (2008)
387.
[32] R. Karmakar, C.R. Choudhury, D.L. Hughes, G.P.A. Yap, M.S. El Fallah, C.
Desplanches, J.-P. Sutter, S. Mitra, Inorg. Chim. Acta 359 (2006) 1184.
[33] D. Ghoshal, H. Bialas, A. Escuer, M. Font-Bardía, T.K. Maji, J. Ribas, X. Solans, R.
Vicente, E. Zangrando, N.R. Chaudhuri, Eur. J. Inorg. Chem. (2003) 3929.
[34] N. Kitajima, Y. Morooka, Chem. Rev. 94 (1994) 737.
[35] C. Gerdemann, C. Eicken, B. Krebs, Acc. Chem. Res. 35 (2002) 183.
[36] E.I. Solomon, U.M. Sundaram, T.E. Machonkin, Chem. Rev. 96 (1996) 2563.
[37] N.A. Rey, A. Neves, A.J. Bortoluzzi, C.T. Pich, H. Terenzi, Inorg. Chem. 46 (2007)
348.
Acknowledgements
D. Sadhukhan is thankful to University Grants Commission, New
Delhi, Government of India for financial assistance. R.J.B. wishes to
acknowledge the NSF-MRI program (Grant CHE-0619278) for funds
to purchase the Oxford Diffraction Gemini diffractometer. We also
acknowledge the European Union (MAGMANet network of excel-
lence), the Spanish Ministerio de Educación y Ciencia (CSD 2007-
00010 Consolider-Ingenio in Molecular Nanoscience) and the Gen-
eralitat Valenciana (Project PROMETEO/2009/095).
[38] J. Mukherjee, R. Mukherjee, Inorg. Chim. Acta 337 (2002) 429.
[39] J. Kaizer, T. Csay, G. Speier, M. Giorgi, J. Mol. Catal. A Chem. 329 (2010) 71.
[40] W. Kaim, B. Schwederski, Bioinorganic Chemistry, Wiley, Chichester, 1994.
[41] A. Rompel, H. Fischer, K. Büldt-Karentzopoulos, D. Meiwes, F. Zippel, H.-F.
Nolting, C. Hermes, B. Krebs, H. Witzel, J. Inorg. Biochem. 59 (1995) 715.
[42] G.M. Sheldrick, SHELX-97, University of Göttingen, 1997.
[43] M. Dolaz, M. Tümer, M. Dig˘rak, Transition Met. Chem. 29 (2004) 528.
[44] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination
Compounds: Theory and Applications in Inorganic Chemistry, Part – A, fifth
ed., John Willey and Sons Inc., New York, 1997.
[45] Z.-L. You, H.-L.Z. Zhu, Z. Anorg. Allg. Chem. 630 (2004) 2754.
[46] B. Vangdal, J. Carranza, F. Lloret, M. Julve, J. Sletten, J. Chem. Soc., Dalton Trans.
(2002) 566.
[47] S. Thakurta, J. Chakraborty, G.M. Rosair, J. Tercero, M.S. El Fallah, E. Garribba, S.
Mitra, Inorg. Chem. 47 (2008) 6227.
Appendix A. Supplementary material
CCDC 754866 contains the supplementary crystallographic data
for 1. These data can be obtained free of charge from The Cambridge
quest/cif. Supplementary data associated with this article can be
[48] A. Golcu, M. Tumer, H. Demirelli, R.A. Wheatley, Inorg. Chim. Acta 358 (2005)
1785.
[49] P. Dapporto, M. Formica, V. Fusi, L. Giothi, M. Micheloni, P. Paoli, R. Pontellini,
P. Rossi, Inorg. Chem. 40 (2001) 6186.
[50] T. Gajda, A. Jancsó, S. Mikkola, H. Lönnberg, H. Sirges, J. Chem. Soc., Dalton
Trans. (2002) 1757.
[51] A.B.P. Lever, Inorganic Electronic Spectroscopy, second ed., Elsevier,
Amsterdam, 1984.
[52] W. Mazurek, A.M. Bond, K.S. Murray, M.J. O’connor, A.G. Wedd, Inorg. Chem. 24
(1985) 2484.
References
[53] W. Zhang, S. Liu, C. Ma, D. Jiang, Polyhedron 17 (1998) 3835.
[54] W.-X. Zhang, C.-q. Ma, S.-f. Si, Transition Met. Chem. 26 (2001) 380.
[55] S.K. Mandal, K. Nag, J. Chem. Soc., Dalton Trans. (1983) 2429.
[56] S.K. Mandal, K. Nag, J. Chem. Soc., Dalton Trans. (1984) 2141.
[57] S. Karunakaran, M. Kandaswamy, J. Chem. Soc., Dalton Trans. (1994) 1595.
[58] A. Dissouky, G.B. Mohamad, Inorg. Chim. Acta 168 (1990) 241.
[59] H.W. Yim, L.M. Tran, E.E. Pullen, .D. Rabinovich, L.M. Liable-Sands, T.E.
Concolino, A.L. Rheingold, Inorg. Chem. 38 (1999) 6234.
[60] L.S. Santos, C.H. Pavam, W.P. Almeida, F. Coelho, M.N. Eberlin, Angew. Chem.
116 (2004) 4430.
[1] J.Y. Lee, O.K. Farha, J. Roberts, K.A. Scheidt, S.B.T. Nguyen, J.T. Hupp, Chem. Soc.
Rev. 38 (2009) 1450.
[2] M. Kurmoo, Chem. Soc. Rev. 38 (2009) 1353.
[3] M.D. Allendorf, C.A. Bauer, R.K. Bhaktaa, R.J.T. Houk, Chem. Soc. Rev. 38 (2009)
1330.
[4] A. Ray, G.M. Rosair, R. Kadam, S. Mitra, Polyhedron 28 (2009) 796.
[5] J. Chakraborty, S. Thakurta, B. Samanta, A. Ray, G. Pilet, S.R. Batten, P. Jensen, S.
Mitra, Polyhedron 26 (2007) 5139.
[6] A. Ray, C. Rizzoli, G. Pilet, C. Desplanches, E. Garribba, E. Rentschler, S. Mitra,
Eur. J. Inorg. Chem. (2009) 2915.
[7] M.S. Ray, A. Ghosh, R. Bhattacharya, G. Mukhopadhyay, M.G.B. Drew, J. Ribas,
Dalton Trans. (2004) 252.
[8] M.S. Ray, S. Chattopadhyay, M.G.B. Drew, A. Figuerola, J. Ribas, C. Diaz, A.
Ghosh, Eur. J. Inorg. Chem. (2005) 4562.
[9] P. Mukherjee, C. Biswas, M.G.B. Drew, A. Ghosh, Polyhedron 26 (2007) 3121.
[10] P. Mukherjee, M.G.B. Drew, A. Ghosh, Inorg. Chem. 48 (2009) 2364.
[11] M.J. MacLachlan, M.K. Park, L.K. Thompson, Inorg. Chem. 35 (1996) 5492.
[12] X. Lü, W.-Y. Wong, W.-K. Wong, Eur. J. Inorg. Chem. (2008) 523.
[13] A. Datta, C.R. Choudhury, P. Talukder, S. Mitra, L. Dahlenburg, T. Matsushita, J.
Chem. Res. (S) (2003) 642.
[14] S. Thakurta, J. Chakraborty, G. Rosair, J. Tercero, M.S. El Fallah, E. Garribba, S.
Mitra, Inorg. Chem. 47 (2008) 6227.
[15] A. Ray, D. Sadhukhan, G.M. Rosair, C.J. Gómez-García, S. Mitra, Polyhedron 28
(2009) 3542.
[61] A.W. Addison, T.N. Rao, J. Reedijk, J.V. Rijn, G.C. Verschoor, J. Chem. Soc., Dalton
Trans. (1984) 1349.
[62] B. Bleaney, K.D. Blowers, Proc. Roy. Soc. Lond. Ser. A 214 (1952) 451.
[63] O. Kahn, Molecular Magnetism, VCH Publishers, 1993.
[64] P.J. Hay, J.C. Thibeault, R. Hoffmann, J. Am. Chem. Soc. 97 (1975) 4884.
[65] V.H. Crawford, H.W. Richardson, J.R. Wasson, D.J. Hodgson, W.E. Hatfield,
Inorg. Chem. 15 (1976) 2107.
[66] L. Merz, W. Haase, J. Chem. Soc., Dalton Trans. (1980) 875.
[67] J. Reim, B. Krebs, J. Chem. Soc., Dalton Trans. (1997) 3793.
[68] R. Wegner, M. Gottschaldt, H. Gorls, E.G. Jager, D. Klemm, Chem. Eur. J. 7 (2001)
2143.
[69] A. Neves, L.M. Rossi, A.J. Bortoluzzi, B. Szpoganicz, C. Wiezbicki, E. Schwingel,
Inorg. Chem. 41 (2002) 1788.
[70] C. Fernandes, A. Neves, A.J. Bortoluzzi, A.S. Mangrich, E. Rentschler, B.
Szpoganicz, E. Schwingel, Inorg. Chim. Acta 320 (2001) 12.
[71] S.-C. Cheng, H.-H. Wei, Inorg. Chim. Acta 340 (2002) 105.
[16] A. Ray, G.M. Rosair, R. Rajeev, R.B. Sunoj, E. Rentschler, S. Mitra, Dalton Trans.
(2009) 9510.