Optimization of Glucagon Receptor Antagonists
J ournal of Medicinal Chemistry, 2002, Vol. 45, No. 26 5775
(5) Unger, R. H.; Orci, L. The Essential Role of Glucagon in the
Pathogenesis of Diabetes Mellitus. Lancet 1975, 1, 14-16.
(6) Dobbs, R. E.; Sakurai, H.; Sasaki, H.; Faloona, G.; Valverde, I.;
Baetens, D.; Orici, L.; Unger, R. Glucagon: Role in the Hyper-
glycemia of Diabetes Mellitus. Science 1975, 187, 544-547.
(7) Gerich, J . E.; Lorenzi, M.; Bier, D. M.; Schneider, V.; Tsalikian,
E.; Karam, J . H.; Forsham, P. H. Prevention of Human Diabetic
Ketoacidosis by Somatostatin. N. Engl. J . Med. 1975, 292, 985-
989.
(8) Brand, C. L.; Rolin, B.; J ørgensen, P. N.; Svendsen, I.; Kris-
tensen, J . S.; Holst, J . J . Immunoneutralisation of Endogenous
Glucagon with Monoclonal Glucagon Antibody Normalizes Hy-
perglycaemia in Moderately Streptozotocin-Diabetic Rats. Dia-
betologia 1994, 37, 985-993.
step perfusion technique and cultured essentially as previously
described.21 To study glycogenolysis, hepatocytes were incu-
bated with 15 mM glucose and 10 nM insulin for 24 h to induce
glycogen synthesis. The hepatocytes were washed twice in
prewarmed buffer A (117.6 mM NaCl, 5.4 mM KCl, 0.82 mM
Mg2SO4, 1.5 mM KH2PO4, 20 mM HEPES, 9 mM NaHCO3,
0.1% w/v HSA, and 2.25 mM CaCl2, pH 7.4 at 37 °C) and
incubated with increasing concentrations of 74 (0-1000 nM)
in the presence of 0.5 nM glucagon or with increasing
concentration of glucagon (0-100 nM) in buffer A for 70 min.
The glucose released into the medium and the glycogen levels
were measured as described previously.21
(9) Brand, C. L.; J ørgensen, P. N.; Knigge, U.; Warberg, J .; Svend-
sen, I.; Kristensen, J . S.; Holst, J . J . Role of glucagon in
maintanence of euglycemia in fed and fasted rats. Am. J . Physiol.
1995, 32, E469-E477.
(10) Brand, C. L.; J oergensen, P. N.; Svendsen, I.; Holst, J . J .
Evidence for a Major Role for Glucagon in Regulation of Plasma
Glucose in Conscious, Nondiabetic, and Alloxan-Induced Diabetic
Rabbits. Diabetes 1996, 45, 1076-1083.
(11) Brandt, C. L.; Hansen, B.; Gronemann, S.; Moysen, M.; Holst,
J . J . Subchronic glucagon neutralisation improves diabetes in
ob/ob mice. Diabetes 2000, 49 (S1), A81.
(12) Hansen, L. H.; Larger, E.; Chaput, J .-C.; Vissuzaine, C.; Holst,
J . J .; Madsen, O. D.; Yakushiji, F.; De Meyts, P.; Assan, R.;
Nishimura, E. Identification of a glucagon receptor gene deletion
mutation in a patient with hyperglucagonemia and pseudo-
adenomatous hyperplasia of pancreatic alpha-cells. Presented
at the 81st Annual Meeting of the Endocrine Society, San Diego,
CA, 1999; Paper P3-441.
In Vitr o Meta bolism . Meta bolic Ra te of Disa p p ea r -
a n ce. Test compounds were screened in rat liver microsomes
in order to determine the metabolic rate of disappearance.
Incubation times were 0, 5, 10, 10, 30 min (n ) 3), total
incubation volume was 150 µL, protein content was 0.331 mg/
mL, the incubation mixture contained 1 mM UDP-GA, 1 mM
NADPH, KH2PO4 (pH 7.4) buffer up to 150 µL, and the
compound concentration was 10 µM. Incubation temperature
was 37 °C. All incubations were performed in a 96-well plate
format, and a Packard liquid handler was applied for incuba-
tions and liquid handling in general. Microsomal incubations
were terminated by addition of 150 µL of MeCN. The metabolic
rates were determined via LC-MS analysis (disappearance
of parent).
Meta bolic P r ofilin g. Incubation times were 0 and 60 min
(n ) 3), total incubation volume was 1000 µL, protein content
was 1 mg/mL, compound concentration was 25 µM, and
incubation temperature was 37 °C. The incubation mixture
contained 1 mM UDP-GA, 1 mM NADPH, and KH2PO4 (pH
7.4) buffer up to 1000 µL. Microsomal incubations were
terminated by solid-phase extraction (SPE).
(13) Parker, J . C.; Andrews, K. M.; Allen, M. R.; Stock, J . L.; McNeish,
J . D. Glycemic Control in Mice with Targeted Disruption of the
Glucagon Receptor Gene. Biochem. Biophys. Res. Commun.
2002, 290, 839-843.
(14) Madsen, P.; Brand, C. L.; Holst, J J .; Knudsen, L. B. Advances
in Non-Peptide Glucagon Receptor Antagonists. Curr. Pharm.
Des. 1999, 5, 683-691.
SP E Meth od . SPE column: SPEC (C8) SPE cartridge.
Activation: 1000 µL of MeOH + 1000 µL of NaHPO4 (pH 7.4).
Sample volume: 1000 µL. Washing: 2 × 1000 µL of NaHPO4
(pH 7.4). Eluate: 1000 µL of MeOH. The three samples (LC-
MS) at each time point were pooled, and the solvent was
evaporated under N2 gas at 40 °C. A total of 250 µL of mobile
phase was then added to the evaporated sample and analyzed
by LC-MS.
Ch r om a togr a p h y. A reversed-phase chromatographic col-
umn (4.6 mm × 30 mm i.d., 5 µm particles, Luna C18)
(Phenomenex, Torrance, CA) was used with a flow rate of 1
mL/min. Eluent A consisted of 5% MeCN in ammonium acetate
(20 mM). Eluent B consisted of 21% MeCN in ammonium
acetate (20 mM). The linear gradient system applied was the
following: initially the mobile phase contained 10% B and 90%
A, which was increazed to 100% B in 5 min.
(15) Connell, R. D. Glucagon antagonists for the treatment of type 2
diabetes. Expert Opin. Ther. Pat. 1999, 9, 701-709.
(16) Livingston, J . N. Glucagon and Glucagon-Like Peptide-1. Annu.
Rep. Med. Chem. 1999, 34, 189-198.
(17) Chang, L. L.; Sidler, K. L.; Cascieri, M. A.; de Laszlo, S.; Koch,
G.; Li, B.; MacCoss, M.; Mantlo, N.; O’Keefe, S.; Pang, M.;
Rolando, A.; Hagmann, W. K. Substituted Imidazoles as Glu-
cagon Receptor Antagonists. Bioorg. Med. Chem. Lett. 2001, 11,
2549-2553.
(18) Ling, A.; Hong, Y.; Gonzalez, J .; Gregor, V.; Polinsky, A.; Kuki,
A.; Shi, S.; Teston, K.; Porter, J .; Kiel, D.; Lakis, J .; Anderes,
K.; May, J .; Knudsen, L. B.; Lau, J . Identification of Alkylidene
Hydrazides as Glucagon Receptor Antagonist. J . Med. Chem.
2001, 44, 3141-3149.
(19) Ling, A.; Plewe, M. B.; Gonzalez, J .; Madsen, P.; Sams, C. K.;
Lau, J .; Gregor, V.; Murphy, D.; Teston, K.; Kuki, A.; Shi, S.;
Truesdale, L. K.; Kiel, D.; May, J .; Lakis, J .; Anderes, K.;
Iatsimirskaia, E.; Sidelmann, U. G.; Knudsen, L. B.; Brand, C.
L.; Polinsky, A. Human Glucagon Receptor Antagonists Based
on Alkylidene Hydrazides. Bioorg. Med. Chem. Lett. 2002, 12,
663-666.
(20) Madsen, P.; Knudsen, L. B.; Wiberg, F. C.; Carr, R. D. Discovery
and Structure-Activity Relationship of the First Non-Peptide
Competitive Human Glucagon Receptor Antagonists. J . Med.
Chem. 1998, 41, 5150-5157.
(21) Andersen, B.; Rassov, A.; Westergaard, N.; Lundgren, K. Inhibi-
tion of glycogenolysis in primary rat hepatocytes by 1,4-dideoxy-
1,4-imino-D-Arabinitol. Biochem. J . 1999, 342, 545-550.
(22) Kenakin, T. Pharmacological analysis of drug-receptor interac-
tion, 3rd ed.; Lippincott-Raven Publishers: Philadelphia, PA,
1997.
LC-MS An a lysis. A Perkin-Elmer HPLC system (Nor-
walk, CT) consisting of an autosampler 200AS An intelligent
pump 200LC and a UV detector APB 785A (operating at 254
nm) was used, and the Sciex API 150 mass spectrometer
running with a turbo Ionspray interphase (Thornhill, Canada)
was also used.
Ack n ow led gm en t. The skillful technical assistance
of Annette Nielsen, Paw Bloch, Dorthe E. J ensen, Sanne
Kold, Claus B. J ensen, Ingrid Sveistrup, Ina Dresner,
Karin H. Albrechtsen, J ørgen S. J ensen, Lone Rise-
gaard, and Brian Hansen is gratefully acknowledged.
(23) Knudsen, L. B.; Brand, C. L.; Sidelmann, U. G.; Teston, K.; Ling,
A.; Madsen, P.; Lau, J . NNC 25-2504, a potent glucagon receptor
antagonist. Diabetes 2001, 50 (Suppl. 2), A309.
(24) Still, W. C.; Kahn, M.; Mitra, A. Rapid Chromatographic
Technique for Preparative Separations with Moderate Resolu-
tion. J . Org. Chem. 1978, 43, 2923-2925.
(25) Ling, A.; Gregor, V.; Gonzalez, J .; Hong, Y.; Kiel, D.; Kuki, A.;
Shi, S.; Naerum, L.; Madsen, P.; Sams, C. K.; Lau, J .; Plewe, M.
B.; Feng, J .; Teng, M.; J ohnson, M. D.; Teston, K. A.; Sidelmann,
U. G. Patent WO 99/01423, 1999.
(26) Ling, A.; Kuki, A.; Shi, S.; Plewe, M. B.; Feng, J .; Truesdale, L.
K.; May, J .; Kiel, D.; Madsen, P.; Sams, C. K.; Lau, J . Patent
WO 00/39088, 2000.
(27) Shulezhko, A. A.; Kiprianov, A. I. Cyanine dyes with benzene,
naphthalene and anthracene rings in the polymethine chain. J .
Org. Chem. (USSR) Engl. Transl. 1968, 4, 1052-1055.
Refer en ces
(1) Lok, S.; Kujiper, J . L.; J elinek, L. J .; Kramer, J . M.; Whitmore,
T. E.; Sprecher, C. A.; Methewes, S.; Grant, F. J .; Biggs, S. H.;
Rosenberg, G. B. The human glucagon receptor encoding gene:
structure, cDNA sequence and chromosomal localization. Gene
1994, 140, 203-209.
(2) Kindsvogel, W.; J elinek, L. J .; Grant, F. J .; Kuijper, J . L.; Foster,
D. C.; Lok, S. U.S. Patent 5,770,445, 1998.
(3) DeFronzo, R. A.; Bonadonna, R. C.; Ferrannini, E. Pathogenesis
of NIDDM, a Balanced Overview. Diabetes Care 1992, 15, 318-
368.
(4) Consoli, A.; Nurjhan, N.; Capiani, F.; Gerich, J . Predominant
Role of Gluconeogenesis in Increased Hepatic Glucose Production
in NIDDM. Diabetes 1989, 38, 550-557.
J M0208572