F. Maran, M. C. ArØvalo, M. S. Workentin et al.
[13] A. Cardinale, A. Gennaro, A. A. Isse, F. Maran in New Directions in
Organic Electrochemistry, Vol. 2000-15(Eds.: A. J. Fry, Y. Matsu-
mura), The Electrochemical Society, New Jersey, 2000, pp. 136–140.
[14] A. Cardinale, A. A. Isse, A. Gennaro, M. Robert, J.-M. SavØant, J.
Am. Chem. Soc. 2002, 124, 13533–13539.
[15] a) M. G. Severin, M. C. ArØvalo, G. Farnia, E. Vianello, J. Phys.
Chem. 1987, 91, 466–472; b) M. C. ArØvalo, G. Farnia, M. G. Sever-
in, E. Vianello, J. Electroanal. Chem. 1987, 220, 201–221; c) M. G.
Severin, M. C. ArØvalo, F. Maran, E. Vianello, J. Phys. Chem. 1993,
97, 150–157; d) A. B. Meneses, S. Antonello, M. C. ArØvalo, F.
Maran, Electrochim. Acta 2005, 50, 1207–1215.
To conclude, thanks to reliable and well-tested electro-
chemical protocols (for convolution analysis and homogene-
ous redox catalysis) and the variety of ET data accumulated
since the 1980s (particularly by SavØantꢁs group, the Aarhus
school, and us), it now is possible to observe that the law
governing the difference between the heterogeneous and
homogeneous data is common to different types of ET,
ranging from simple outer-sphere ETs to concerted DETs.
These processes are ruled by a quadratic activation/driving
force relationship of the Marcus or SavØant form. The corre-
lation of Figure 7 also shows progressive variation of the in-
trinsic barriers: the barriers of the two borderline DET
cases are similar, and those of peroxides (concerted DET)
are even smaller than those of disulfides forming s* radical
anions. A significance of Equation (24) validating the Hush
model is its predictability, because in many cases one of the
intrinsic barriers is often difficult or impractical to obtain.
[16] S. Jakobsen, H. Jensen, S. U. Pedersen, K. Daasbjerg, J. Phys. Chem.
A 1999, 103, 4141–4143.
[17] a) The Chemistry of Sulphur-Containing Functional Groups,
Suppl. S, (Eds.: S. Patai, Z. Rappoport), Wiley, New York, 1993;
b) S-centered Radicals (Ed.: Z. B. Alfassi), Wiley, Chichester, 1999;
c) R. A. Rossi, A. B. Pierini, A. B. PeÇØÇory, Chem. Rev. 2003, 103,
71–167.
[18] N. S. Hush, Electrochim. Acta 1968, 13, 1005–1023.
[19] S. Antonello, F. Maran, J. Am. Chem. Soc. 1998, 120, 5713–5722.
[20] a) C. Finzi, V. Bellavista, Gazzetta Chimica Italiana 1932, 62, 699–
709; b) G. Farnia, A. Ceccon, P. Ceselli, J. Chem. Soc. Perkin Trans.
2 1972, 1016–1021; c) G. Farnia, M. G. Severin, E. Vianello, J.
Chem. Soc. Perkin Trans. 2 1978, 1–8; d) G. Capobianco, G. Farnia,
M. G. Severin, E. Vianello, J. Electroanal. Chem. 1984, 165, 251–
263; e) S. Tognato, Laurea thesis, University of Padova, Italy, 1991.
[21] S. Antonello, M. Musumeci, D. D. M. Wayner, F. Maran, J. Am.
Chem. Soc. 1997, 119, 9541–9549.
Acknowledgements
This work was financially supported by the Ministero dell’Istruzione, del-
l’Università e della Ricerca (MIUR, Italy), the Integrated Action Italy-
Spain between the University of Padova and the Universidad de La
Laguna, and the Natural Science and Engineering Research Council
(NSERC) of Canada. A.B.M. is thankful to the Universidad de La
Laguna y Caja Canarias for a PhD grant.
[22] A. B. Meneses, S. Antonello, M. C. ArØvalo, F. Maran, Electroanaly-
sis 2006, 17, 363–370.
[23] F. Maran, M. S. Workentin, unpublished results.
[24] a) R. Fuhlendorff, D. Occhialini, S. U. Pedersen, H. Lund, Acta
Chem. Scand. 1989, 43, 803–806; b) D. D. M. Wayner, D. J. McPhee,
D. Griller, J. Am. Chem. Soc. 1988, 110, 132–137; c) J. Gamby, P.
Hapiot, J.-M. SavØant, J. Am. Chem. Soc. 2002, 124, 8798–8799.
[25] When not available, the pKDa MF values can be obtained from the cor-
[1] a) F. Maran, D. D. M. Wayner, M. S. Workentin, Adv. Phys. Org.
Chem. 2001, 36, 85–166; b) F. Maran, M. S. Workentin, Interface
2002, 31, 44–49.
responding data in DMSO[25b–e] by using the correlation pKDa MF
1.56+0.96pKaDMSO [25a]
a) F. Maran, D. Celadon, M. G. Severin, E.
=
[2] S. Antonello, F. Maran, Chem. Soc. Rev. 2005, 34, 418–428.
[3] J.-M. SavØant, Adv. Phys. Org. Chem. 2000, 35, 117–192.
[4] a) M. G. Severin, G. Farnia, E. Vianello, M. C. ArØvalo, J. Electroa-
nal. Chem. 1988, 251, 369–382; b) S. Antonello, F. Maran, J. Am.
Chem. Soc. 1997, 119, 12595–12600; c) S. Antonello, F. Maran, J.
Am. Chem. Soc. 1999, 121, 9668–9676; d) S. Antonello, F. Formag-
gio, A. Moretto, C. Toniolo, F. Maran, J. Am. Chem. Soc. 2001, 123,
9577–9584; e) F. Najjar, C. AndrØ-Barrs, M. Baltas, C. Lacaze-Du-
faure, D. C. Magri, M. S. Workentin, T. TzØdakis, Chem. Eur. J.
2007, 13, 1174–1179.
[5] a) C. P. Andrieux, M. Robert, F. D. Saeva, J.-M. SavØant, J. Am.
Chem. Soc. 1994, 116, 7864–7871; b) C. P. Andrieux, J.-M. SavØant,
C. Tardy, J. Am. Chem. Soc. 1997, 119, 11546–11547; c) L. Pause,
M. Robert, J.-M. SavØant, J. Am. Chem. Soc. 1999, 121, 7158–7159;
d) C. Costentin, P. Hapiot, M. MØdebielle, J.-M. SavØant, J. Am.
Chem. Soc. 1999, 121, 4451–4460; e) C. Costentin, M. Robert, J.-M.
SavØant, J. Am. Chem. Soc. 2004, 126, 16834–16840.
[6] A. Houmam, E. M. Hamed, I. W. Still, J. Am. Chem. Soc. 2003, 125,
7258–7265.
.
Vianello, J. Am. Chem. Soc. 1991, 113, 9320–9329; b) F. G. Bord-
well, W. S. Matthews, N. R. Vanier, J. Am. Chem. Soc. 1975, 97, 442–
443; c) F. G. Bordwell, J. E. Bares, J. E. Bartmess, G. E. Drucker, J.
Gerhold, G. J. McCollum, M. Van Der Puy, N. R. Vanier, W. S. Mat-
thews, J. Org. Chem. 1977, 42, 326–332; d) W. N. Olmstead, Z. Mar-
golin, F. G. Bordwell, J. Org. Chem. 1980, 45, 3295–3299; e) F. G.
Bordwell, D. L. Hughes, J. Org. Chem. 1982, 47, 3224–3232.
[26] a) F. Maran, S. Roffia, M. G. Severin, E. Vianello, Electrochim. Acta
1990, 35, 81–88; b) F. Maran, J. Am. Chem. Soc. 1993, 115, 6557–
6563.
[27] a) R. S. Nicholson, I. Shain, Anal. Chem. 1964, 36, 706–723; b) L.
Nadjo, J.-M. SavØant, J. Electroanal. Chem. 1973, 48, 113–145;
c) A. J. Bard, L. R. Faulkner, Electrochemical Methods, Fundamen-
tals and Applications, 2nd ed., Wiley, New York, 2001.
[28] J.-M. SavØant, D. Tessier, J. Electroanal. Chem. 1975, 65, 57–66.
[29] The convolution integral (J. C. Imbeaux, J.-M. SavØant, J. Electro-
iðuÞ
anal. Chem. 1973, 44, 169–187) is: I=p1/2
"
1=2 du
0
ðtꢀuÞ
The I–E plot has a sigmoidal shape, and the limiting value is Il =
nFAD1/2C*, where n is the overall electron consumption, A the elec-
trode area, D the diffusion coefficient, and C* the substrate concen-
tration. For a slow heterogeneous ET or when the latter becomes ir-
reversible because of a fast follow-up reaction, such as bond cleav-
[7] M. A. Prasad, M. V. Sangaranarayanan, Chem. Phys. Lett. 2005, 414,
55–60.
[8] C. P. Andrieux, J.-M. SavØant, J. Electroanal. Chem. 1986, 205, 43–
58.
[9] a) R. A. Marcus, Ann. Pharm. Belg. Ann. Rev. Phys. Chem. 1964, 15,
155–196; b) R. A. Marcus, N. Sutin, Biochim. Biophys. Acta 1985,
811, 265–322.
[10] J.-M. SavØant, J. Am. Chem. Soc. 1987, 109, 6788–6795.
[11] a) K. Daasbjerg, H. Jensen, R. Benassi, F. Taddei, S. Antonello, A.
Gennaro, F. Maran, J. Am. Chem. Soc. 1999, 121, 1750–1751; b) S.
Antonello, K. Daasbjerg, H. Jensen, F. Taddei, F. Maran, J. Am.
Chem. Soc. 2003, 125, 14905–14916.
age, the potential-dependent heterogeneous rate constant khet
=
khet(E) is obtained as a function of E through equation lnkhet(E)=
lnD1/2ꢀln[(IlꢀI)/i].
[30] J.-M. SavØant, J. Phys. Chem. 1994, 98, 3716–3724.
[31] By assuming a linear activation/driving force relationship for the ET
reaction, Equation (12) takes the following form:[8]
ꢂ
ꢃ
1
1
kd
1
1
kd
1
1
=
þ
+
+
khom
kꢁhom expðꢀahom DGꢁ=RTÞ
Zhom expðꢀDGꢁ=RTÞ
[12] S. Antonello, R. Benassi, G. Gavioli, F. Taddei, F. Maran, J. Am.
Chem. Soc. 2002, 124, 7529–7538.
where kꢁhom is the homogeneous standard rate constant (correspond-
ing to the value of the ET rate constant by a generic donor matching
7994
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Chem. Eur. J. 2007, 13, 7983 –7995