330
J . Org. Chem. 1999, 64, 330-331
Design , Syn th esis a n d Eva lu a tion of
P oly-L-P r olin e Typ e-II P ep tid e Mim ics Ba sed
on th e 3-Aza bicyclo[3.1.0]h exa n e System
Rui Zhang and J ose S. Madalengoitia*
Department of Chemistry, University of Vermont,
Burlington, Vermont 05405
Received September 8, 1998
F igu r e 1. Stereodrawing of an overlay of 1 with leucine in which
the ø1 angle is gauche(-) and the two ø2 angles are gauche(-)
and trans, respectively (rms ) 0.30 Å). Light bonds denote 1. Dark
bonds denote leucine.
Recently, the poly-L-proline type-II (PPII) secondary
structure has been shown to play a critical role in mediating
several cellular signaling pathways.1,2 Due to the potential
utility of agents capable of inhibiting these signaling mech-
anisms, we are developing a program focused on the design
and synthesis of mimics of the PPII secondary structure. Our
basic strategy involves the synthesis of oligopeptides com-
posed of proline-templated amino acids (PTAAs) that will
populate the PPII conformation in solution.3 Among the
PTAAs that we desire are those that arise from the
3-azabicyclo[3.1.0]hexane system since molecular modeling
studies exhibit that, for these PTAAs, the amino acid
templated on the proline skeleton will possess a ø1 angle of
approximately -60°.4 These PTAAs should prove of great
interest since NMR and X-ray crystal structures of receptor-
bound PPII helices show that for the nonprolyl amino acids
in these PPII helices a ø1 angle of approximately -60°
(gauche(-) relative to the amine nitrogen) is common. An
overlay of a leucine PTAA analogue with a leucine construct
in which the ø1 angle is gauche(-) and the two ø2 angles
are trans and gauche(-), respectively, displays the goodness
of fit between these compounds (Figure 1).5 This paper
describes the synthesis of monomeric, dimeric, and trimeric
leucine PTAA analogue based on the 3-azabicyclo[3.1.0]-
hexane system and conformational studies of these mol-
ecules in CDCl3.
Sch em e 1
The synthesis of the oligomeric PTAAs was achieved by a
modular assembly described in Scheme 1. Reaction of tricycle
* To whom correspondence should be addressed.
(1) For a recent PPII review see: Siligardi, G.; Drake, A. F. Peptide Sci.
1995, 37, 281.
(2) For recent examples of proteins that bind PPII helices see: (a) Raj,
P. A.; Marcus, E.; Edgerton, M. Biochemistry 1996, 35, 4314. (b) Lee, C.-
H.; Saksela, K.; Mirza, U. A.; Chait, B. T.; Kuriyan, J . Cell 1996, 85, 931.
(c) Peng, S.; Kasahara, C.; Rickles, R. J .; Schreiber, S. L. Proc. Natl. Acad.
Sci. U.S.A. 1995, 92, 12408. (d) J ardetzky, T. S.; Brown, J . H.; Gorga, J .
C.; Stern, L. J .; Urban, R. G.; Strominger, J . L.; Wiley: D. C. Proc. Natl.
Acad. Sci. U.S.A. 1996, 93, 734. (e) Zeile, W. L.; Purich, D. L.; Southwick,
F. S. J . Cell Biol. 1996, 133, 49.
(3) (a) Zhang, R.; Brownewell, F.; Madalengoitia, J . S. J . Am. Chem. Soc.
1998, 120, 3894. (b) Zhang, R.; Madalengoitia, J . S. Tetrahedron Lett. 1996,
37, 6235.
(4) For cyclopropane ring constraints of amino acids see: (a) Martin, S.
F.; Austin, R. E.; Oalmann, C. J .; Baker, W. R. Condon, S. L. deLara, E.;
Rosenberg, S. H.; Spina, K. P.; Stein, H. H.; Cohen, J .; Kleinert, H. D. J .
Med. Chem. 1992, 35, 1710. (b) Burgess, K.; Ho, K.-K.; Pettitt, B. M. J .
Am. Chem. Soc. 1994, 116, 799.
(5) (a) For the leucine construct: gauche (-) ) -60° and trans ) 180°.
CR, Câ, Cγ, and Cδ as well as the nitrogen and carbonyl carbon of leucine
were chosen to be overlaid with the corresponding atoms on the PTAA. (b)
For PPII helices in which leucine residues have a ø1 angle gauche(-), and
ø2 angles, gauche(-) and ∼ trans, see: Feng, S.; Chen, J . K. Yu, H.; Simon,
J . A.; Schreiber, S. L. Science 1994, 266, 1241. (c) Yu, H.; Chen, J . K.; Feng,
S.; Dalgarno, D. C.; Brauer, A. W.; Schreiber, S. L. Cell 1994, 76, 933.
2 with LAH in refluxing THF effected reduction of the
lactam and oxazolidine functions to afford the N-benzy-
lamino alcohol, which was debenzylated (H2, Pd-C, 50 psi)
and reprotected with Boc2O in CH2Cl2 to afford the alcohol
3 (85% from 2).3a,6 J ones oxidation of the alcohol 3 (70%)
and protection of the resulting acid (76%) gave the benzyl
ester 5. Boc deprotection and reprotection of the resultant
amine afforded the trimethylacetamide 6. Debenzylation of
the ester gave the carboxylic acid 7. The dimer 9 was
obtained by diisopropylcarbodiimide (DIC)-hydroxybenzo-
triazole (HOBt) coupling of the acid 7 and amine 8 fragments
in 75% yield. The trimer 10 was obtained by debenzylation
of 9 followed by DIC-HOBt coupling with the amine
fragment 8 in 72% yield.
(6) For the synthesis of 2: Zhang, R.; Madalengoitia, J . S. J . Org. Chem.
1999, 64, 547-555.
10.1021/jo981814p CCC: $18.00 © 1999 American Chemical Society
Published on Web 12/30/1998